u937 cell
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 17)

H-INDEX

28
(FIVE YEARS 1)

Author(s):  
Xiaomin Chen ◽  
Fengqi Liu ◽  
Dade Rong ◽  
Limei Xu ◽  
Xiuzhen Tong ◽  
...  

Background: SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) is downregulated in acute myeloid leukemia (AML). Clinically, DNA demethylating drug decitabine (DAC) combined with traditional chemotherapies reveals better efficacy on AML patients than the conventional chemotherapies alone. Our previous results revealed that human SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) plays a tumor suppressive role in AML but whether there is a connection between DAC and SH3BGRL expression remains elusive. Methods: Here, we tentatively treated AML cell lines U937, MV4, and HL-60 with DAC and Western Blots. RT-PCR was used to detect the expression of SH3BGRL. Cell proliferation and apoptosis were determined using Annexin V/7-AAD staining. Real-time RT-PCR and Western blot were used to determine the expression of SH3BGRL mRNA and protein. Methylation-specific PCR was used to quantify the DNA methylation in AML cell lines.Results: DAC had cytotoxicity in HL-60, MV4, and U937. In U937 cell lines, treatment with DAC showed the up-regulation of caspase, PARP, and SH3BGRL. Upon treatment, up-regulation of SH3BGRL mRNA and protein was dose-dependent and this activity was partially inhibited in endogenous SH3BGRL knockdown cell lines. Results: DAC had cytotoxicity in HL-60, MV4, and U937. In U937 cell lines, treatment with DAC showed the up-regulation of caspase, PARP, and SH3BGRL. Upon treatment, up-regulation of SH3BGRL mRNA and protein was dose-dependent and this activity was partially inhibited in endogenous SH3BGRL knockdown cell lines. Conclusion: Thus, our results demonstrated a possibly cytotoxic role of DAC on AML cells by upregulation of SH3BGRL expression at epigenetic modulation level and the methylation status in the SH3BGRL promoter region could be a supplemental diagnostic marker to the precise administration of DAC to AML patients.


2021 ◽  
Vol 22 (23) ◽  
pp. 12635
Author(s):  
Petr Mlejnek ◽  
Petr Dolezel ◽  
Eva Kriegova ◽  
Nikola Pastvova

N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•−). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO− from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•− in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0248668
Author(s):  
Diane Heiser ◽  
Joëlle Rubert ◽  
Adeline Unterreiner ◽  
Claudine Maurer ◽  
Marion Kamke ◽  
...  

Background The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. Methods To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. Results PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1β production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. Conclusion Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.


Author(s):  
Jiang-Wen Shen ◽  
Chao Li ◽  
Ming-Yue Yang ◽  
Juan-Fang Lin ◽  
Meng-Die Yin ◽  
...  

2021 ◽  
Author(s):  
Shilpa Kuttikrishnan ◽  
Kirti S. Prabhu ◽  
Tamam Elimat ◽  
Ashraf Khalil ◽  
Nicholas H. Oberlies ◽  
...  

Cancer is one of the most life threatening diseases, causing nearly 13% death in the worldwide. Leukemia, cancer of the hematopoetic cells is the main cause of cancer death in adults and children. Therapeutic agents used in treatment of cancer are known to have narrow therapeutic window and tendency to develop resistance against some cancer cell lines thus, proposing a need to discover some novel agents to treat cancer. In the present study we investigated the anticancer activity of Neosetophomone B(NSP-B), an aquatic fungal metabolite isolated from Neosetophoma sp against leukemic cells (K562 and U937). MTT results demonstrated a dose dependent inhibition of cell proliferation in K562 and U937 cell lines. Annexin staining using flow cytometry indicated that NSP-B treatment cause a dose dependent apoptosis in leukemic cells.Western blot analysis showed that NSP-B mediated apoptosis involves sequential activation of caspase 9, 3 and poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore NSP-B treatment of leukemic cells resulted in upregulation of pro-apoptotic proteins (Bax) with downregulation of anti-apoptotic proteins ( Bcl-2 ).Thus, present study focuses on exploring the mechanism of anticancer activity of NSP-B on leukemic cells, raising the possibility of its use as a novel therapeutic agent for hematological malignancies. Results: We sought to determine whether NSP-B suppresses the growth of leukemic cell lines. We tested a panel of leukemic cell lines with different doses of NSP-B. Cell viability decreased in a concentration-dependent manner in K562 and U937 cell lines. NSP-B induced apoptosis in K562 and U937 cell lines via downregulation of anti-apoptotic proteins and enhancement of pro-apoptotic proteins. NSP-B induced the activation of caspase cascade signaling pathway. Altogether our results suggest that the NSP-B plays an important role in apoptosis in leukemic cell lines .Conclusions: Our data provides insight on anticancer activities of NSP-B in leukemic cell lines (K562 and U937). NSP-B inhibit cell viability via inducing apoptosis. The NSP-B mediated apoptosis occurs via downregulation of anti-apoptotic proteins and enhancement of pro-apototic proteins, thereby activating the caspase-cascade signaling. Further studies are required to elicit role of NSP-B in regulating molecular pathway involved in the progression of cancer. Taken together, above results suggest that NSP-B may have a future therapeutic role in leukemia and possibly other hematological malignancies.


2021 ◽  
Author(s):  
Diane Heiser ◽  
Joëlle Rubert ◽  
Adeline Unterreiner ◽  
Claudine Maurer ◽  
Marion Kamke ◽  
...  

The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1β production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. Thus, although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3183-3189
Author(s):  
Linwei Li ◽  
Jianan Huang ◽  
Hui Lyu ◽  
Fuqin Guan ◽  
Pirui Li ◽  
...  

Two novel lathyrane-type diterpenoids, which possess a trans-gem-dimethylcyclopropane were obtained from seeds of Euphorbia lathyris. The Euphorbia factor L2b exhibited an inhibitory effect against U937 cell line with an IC50 value of 0.87 μM.


2020 ◽  
Vol 19 (3) ◽  
Author(s):  
C.-W. Chen ◽  
S.-H. Chiang ◽  
S.-Y. Wang ◽  
Y.-T. Lin ◽  
F.-Y. Lin ◽  
...  

2020 ◽  
Vol 55 (5) ◽  
pp. 705-712
Author(s):  
Po‐Jan Kuo ◽  
Chi‐Yu Lin ◽  
Tzu‐Ying Chen ◽  
Tsung‐Fu Hung ◽  
Hsiao‐Lun Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document