scholarly journals ENTPD3 Marks Mature Stem Cell Derived Beta Cells Formed by Self-Aggregation in Vitro

2021 ◽  
Author(s):  
Fiona M. Docherty ◽  
Kent A. Riemondy ◽  
Roberto Castro-Gutierrez ◽  
JaeAnn M. Dwulet ◽  
Ali H. Shilleh ◽  
...  

Stem cell derived beta-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably to mature adult beta cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human beta cell maturation remains obscure. Here we show that sBC spontaneously self-enrich into discreet islet-like cap structures within <i>in vitro</i> cultures, independent of exogenous maturation conditions. Multiple complementary assays demonstrate that this process is accompanied by functional maturation of the self-enriched sBC (seBC); however, the seBC still contain distinct subpopulations displaying different maturation levels. Interestingly, the surface protein ENTPD3 (also known as nucleoside triphosphate diphosphohydrolase-3 (NDPTase3)) is a specific marker of the most mature seBC population and can be used for mature seBC identification and sorting. Our results illuminate critical aspects of <i>in vitro</i> sBC maturation and provide important insights towards developing functionally mature sBC for diabetes cell replacement therapy.

2021 ◽  
Author(s):  
Fiona M. Docherty ◽  
Kent A. Riemondy ◽  
Roberto Castro-Gutierrez ◽  
JaeAnn M. Dwulet ◽  
Ali H. Shilleh ◽  
...  

Stem cell derived beta-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably to mature adult beta cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human beta cell maturation remains obscure. Here we show that sBC spontaneously self-enrich into discreet islet-like cap structures within <i>in vitro</i> cultures, independent of exogenous maturation conditions. Multiple complementary assays demonstrate that this process is accompanied by functional maturation of the self-enriched sBC (seBC); however, the seBC still contain distinct subpopulations displaying different maturation levels. Interestingly, the surface protein ENTPD3 (also known as nucleoside triphosphate diphosphohydrolase-3 (NDPTase3)) is a specific marker of the most mature seBC population and can be used for mature seBC identification and sorting. Our results illuminate critical aspects of <i>in vitro</i> sBC maturation and provide important insights towards developing functionally mature sBC for diabetes cell replacement therapy.


2021 ◽  
Author(s):  
Fiona M. Docherty ◽  
Kent A. Riemondy ◽  
Roberto Castro-Gutierrez ◽  
JaeAnn M. Dwulet ◽  
Ali H. Shilleh ◽  
...  

Stem cell derived beta-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably to mature adult beta cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human beta cell maturation remains obscure. Here we show that sBC spontaneously self-enrich into discreet islet-like cap structures within <i>in vitro</i> cultures, independent of exogenous maturation conditions. Multiple complementary assays demonstrate that this process is accompanied by functional maturation of the self-enriched sBC (seBC); however, the seBC still contain distinct subpopulations displaying different maturation levels. Interestingly, the surface protein ENTPD3 (also known as nucleoside triphosphate diphosphohydrolase-3 (NDPTase3)) is a specific marker of the most mature seBC population and can be used for mature seBC identification and sorting. Our results illuminate critical aspects of <i>in vitro</i> sBC maturation and provide important insights towards developing functionally mature sBC for diabetes cell replacement therapy.


2021 ◽  
Author(s):  
Fiona M. Docherty ◽  
Kent A. Riemondy ◽  
Roberto Castro-Gutierrez ◽  
JaeAnn M. Dwulet ◽  
Ali H. Shilleh ◽  
...  

Stem cell derived beta-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably to mature adult beta cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human beta cell maturation remains obscure. Here we show that sBC spontaneously self-enrich into discreet islet-like cap structures within <i>in vitro</i> cultures, independent of exogenous maturation conditions. Multiple complementary assays demonstrate that this process is accompanied by functional maturation of the self-enriched sBC (seBC); however, the seBC still contain distinct subpopulations displaying different maturation levels. Interestingly, the surface protein ENTPD3 (also known as nucleoside triphosphate diphosphohydrolase-3 (NDPTase3)) is a specific marker of the most mature seBC population and can be used for mature seBC identification and sorting. Our results illuminate critical aspects of <i>in vitro</i> sBC maturation and provide important insights towards developing functionally mature sBC for diabetes cell replacement therapy.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Shana O Kelley ◽  
Mahmoud Labib ◽  
Brenda Coles ◽  
Mahla Poudineh ◽  
Brendan Innes ◽  
...  

Loss of photoreceptors due to retinal degeneration is a major cause of untreatable visual impairment and blindness. Cell replacement therapy, using retinal stem cell (RSC)-derived photoreceptors, holds promise for reconstituting...


2020 ◽  
Vol 29 ◽  
pp. 096368972094609
Author(s):  
Shino Ogawa ◽  
Mutsumi Hagiwara ◽  
Sachiyo Misumi ◽  
Naoki Tajiri ◽  
Takeshi Shimizu ◽  
...  

Preterm infants have a high risk of neonatal white matter injury (WMI) caused by hypoxia-ischemia. Cell-based therapies are promising strategies for neonatal WMI by providing trophic substances and replacing lost cells. Using a rat model of neonatal WMI in which oligodendrocyte progenitors (OPCs) are predominantly damaged, we investigated whether insulin-like growth factor 2 (IGF2) has trophic effects on OPCs in vitro and whether OPC transplantation has potential as a cell replacement therapy. Enhanced expression of Igf2 mRNA was first confirmed in the brain of P5 model rats by real-time polymerase chain reaction. Immunostaining for IGF2 and its receptor IGF2 R revealed that both proteins were co-expressed in OLIG2-positive and GFAP-positive cells in the corpus callosum (CC), indicating autocrine and paracrine effects of IGF2. To investigate the in vitro effect of IGF2 on OPCs, IGF2 (100 ng/ml) was added to the differentiation medium containing ciliary neurotrophic factor (10 ng/ml) and triiodothyronine (20 ng/ml), and IGF2 promoted the differentiation of OPCs into mature oligodendrocytes. We next transplanted rat-derived OPCs that express green fluorescent protein into the CC of neonatal WMI model rats without immunosuppression and investigated the survival of grafted cells for 8 weeks. Although many OPCs survived for at least 8 weeks, the number of mature oligodendrocytes was unexpectedly small in the CC of the model compared with that in the sham-operated control. These findings suggest that the mechanism in the brain that inhibits differentiation should be solved in cell replacement therapy for neonatal WMI as same as trophic support from IGF2.


2020 ◽  
Vol 235 (9) ◽  
pp. 6257-6267 ◽  
Author(s):  
Kang Chen ◽  
Yuting Huang ◽  
Radhika Singh ◽  
Zack Z. Wang

2008 ◽  
Vol 24 (3-4) ◽  
pp. E3 ◽  
Author(s):  
Daniel J. Guillaume ◽  
Su-Chun Zhang

✓ The primary therapeutic goal of embryonic stem cell (ESC) research is cell replacement therapy. During the last decade, great strides have been made in developing in vitro protocols for differentiating human ESCs into neuroepithelial progenitors. More recent progress has been made in further directing them into becoming cells with specialized regional and neurotransmitter identities, such as midbrain dopaminergic and spinal motor neurons. Along with directed differentiation, other current efforts are aimed at efficient enrichment, avoidance of immune rejection, demonstration of functional integration, genetic modification to regulate neurotransmitter and factor release, directed axon growth, in vivo cell tracking, and measures to ensure safety. This review will focus on the potential of ESCs as a source of transplantable cells for use in cell replacement therapy.


Sign in / Sign up

Export Citation Format

Share Document