scholarly journals Effects of Slab Types on the Seismic Behavior and Construction Cost of RC Buildings

Author(s):  
Gökhan TUNÇ ◽  
Abdul Basir AZİZİ ◽  
Tuğrul TANFENER
Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 803-817
Author(s):  
Sayed Mahmoud ◽  
Ali Alqarni ◽  
Joseph Saliba ◽  
Amal H. Ibrahim ◽  
Magdy genidy ◽  
...  

2008 ◽  
Vol 30 (12) ◽  
pp. 3681-3707 ◽  
Author(s):  
Arturo Tena-Colunga ◽  
Héctor Correa-Arizmendi ◽  
José Luis Luna-Arroyo ◽  
Gonzalo Gatica-Avilés

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Victor Baca ◽  
Juan Bojórquez ◽  
Edén Bojórquez ◽  
Herian Leyva ◽  
Alfredo Reyes-Salazar ◽  
...  

The control of vibrations and damage in traditional reinforced concrete (RC) buildings under earthquakes is a difficult task. It requires the use of innovative devices to enhance the seismic behavior of concrete buildings. In this paper, we design RC buildings with buckling restrained braces (BRBs) to achieve this objective. For this aim, three traditional RC framed structures with 3, 6, and 9 story levels are designed by using the well-known technique nondominated sorting genetic algorithm (NSGA-II) in order to reduce the cost and maximize the seismic performance. Then, equivalent RC buildings are designed but including buckling restrained braces. Both structural systems are subjected to several narrow-band ground motions recorded at soft soil sites of Mexico City scaled at different levels of intensities in terms of the spectral acceleration at first mode of vibration of the structure Sa(T1). Then, incremental dynamic analysis, seismic fragility, and structural reliability in terms of the maximum interstory drift are computed for all the buildings. For the three selected structures and the equivalent models with BRBs, it is concluded that the annual rate of exceedance is considerably reduced when BRBs are incorporated. For this reason, the structural reliability of the RC buildings with BRBs has a better behavior in comparison with the traditional reinforced concrete buildings. The use of BRBs is a good option to improve strength and seismic behavior and hence the structural reliability of RC buildings subjected to strong earthquake ground motions.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Qing Qin ◽  
Shansuo Zheng ◽  
Lei Li ◽  
Liguo Dong ◽  
Yixin Zhang ◽  
...  

Freeze-thaw of concrete is significantly responsible for serious damage to RC buildings, which may result in premature failure with little warning. Therefore, it is necessary to consider the effects of freeze-thaw environment when assessing seismic performance for RC structures. In this study, pseudo-static experiments of four RC columns were conducted in terms of different number of freeze-thaw cycles (FTCs). The results showed that the FTCs had an influence on the bearing capacity, ductility, strength, and stiffness of RC columns. What is more, the simulation results were commonly smaller than the experimental ones when simply assuming that the degrees of freeze-thaw damage for RC components were uniform. Thus, a numerical model considering uneven distribution of freeze-thaw damage was proposed by utilizing the results of Petersen’s test for relative dynamic modulus of elasticity (RDME) for different depths of concrete sample and based on Berto’s method which was proved to be effective to convert the numbers of FTCs under different freeze-thaw conditions. On the basis of the existing constitutive relations for concrete, four RC columns subjected to different numbers of FTCs were simulated by OpenSees. As a result, the simulation hysteretic curves were in good agreement with the experimental ones.


2018 ◽  
Vol 90 ◽  
pp. 324-340 ◽  
Author(s):  
David Bru ◽  
Antonio González ◽  
F. Javier Baeza ◽  
Salvador Ivorra

Sign in / Sign up

Export Citation Format

Share Document