scholarly journals Bond Strength of Different Adhesive Systems to Dental Hard Tissues

10.2341/06-49 ◽  
2007 ◽  
Vol 32 (2) ◽  
pp. 166-172 ◽  
Author(s):  
A. R. Yazici ◽  
Ç Çelik ◽  
G. Özgünaltay ◽  
B. Dayangaç

Clinical Relevance Bond strength to dental hard tissues was dependent upon the type of adhesive system used and varied with respect to tooth regions.

10.2341/05-20 ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 240-247 ◽  
Author(s):  
F. H. O. Mitsui ◽  
A. R. Peris ◽  
A. N. Cavalcanti ◽  
G. M. Marchi ◽  
L. A. F. Pimenta

Clinical Relevance Bond strength is affected by the combination of thermal and mechanical load cycling. However, results vary greatly with the number of mechanical cycles and adhesive system type (total or self-etching).


2016 ◽  
Vol 69 (3) ◽  
pp. 354-365
Author(s):  
Magdalena Rączkiewicz ◽  
Karolina Mazurek ◽  
Elżbieta Mierzwińska-Nastalska

2007 ◽  
Vol 31 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Carla Miranda ◽  
Luiz Henrique Maykot Prates ◽  
Ricardo de Souza Vieira ◽  
Maria Cristina Marino Calvo

The aims of this study were to evaluate the shear bond strength (SBS) of four adhesive systems applied to primary dentin and enamel and verify, after SBS testing, the failure mode of the adhesive interface. Sixty extracted sound primary molars were selected and crowns were sectioned in a mesial-distal direction. Specimens were randomly assigned into two groups (adhesion to enamel and adhesion to dentin) and then subdivided into four subgroups according to the adhesive system (n=15): Scotchbond Multi-Purpose (SMP) – Single Bond (SB) – Clearfil SE Bond (and Adper Prompt LPop (APL) – SBS tests were performed and the obtained values were statistically analyzed using ANOVA and Tukey tests (p<0.05). The failure mode analysis was performed with a Scanning Electron Microscope (XL-30, Philips). SBS mean values on enamel were [MPa (SD)]: SMP – 27.89 (7.49); SB – 23.92 (8.8); CSB – 24.36 (6.69); APL – 25.96 (4.08); and on dentin: SMP – 17.29 (4.25); SB – 18.2 (8.74); CSB – 16.13 (7.14); APL – 6.04 (3.35). The predominant failure mode was cohesive (primarily of the bonding agent). On enamel SBS was statistically similar for all four adhesives. On dentin SBS of APL was lower than the other tested adhesives.


2014 ◽  
Vol 62 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Ricardo Alves dos SANTOS ◽  
Eliane Alves de LIMA ◽  
Mônica Maria de Albuquerque PONTES ◽  
Alexandre Batista Lopes do NASCIMENTO ◽  
Marcos Antônio Japiassú Resende MONTES ◽  
...  

OBJECTIVE: To assess the bond strength to dentin of the Single Bond (3M ESPE) and XP Bond (Dentsply) total-etch and Adper SE Plus (3M ESPE) self-etch adhesive systems. METHODS: Fifteen healthy human third molars were randomly allocated across three different groups of five teeth each according to the adhesive system. The occlusal portion of each tooth was removed under refrigeration using a flexible diamond disc (EXTEC, Enfield, CT, USA) down to an area of dentin that did not reveal enamel, as confirmed under a 40X stereo microscope (Ramsor, São Paulo, Brazil). A standardized smear layer was created with #600 grit silicon-carbide paper. The adhesive systems were applied as per manufacturer recommendations, with the exception of the Adper SE Plus system, which was triple-polymerized. Composite resin blocks (5 mm) were placed on the dentin surface. The specimens were stored in distilled water for 24 hours at 37ºC. Using a flexible diamond disc (EXTEC, Enfield, CT, USA), toothpick-like specimens with an adhesive area of less than 1 mm² were obtained. A microtensile bond test was then carried out using a universal testing machine (KRATOS) with a crosshead speed of 0.5 mm/min. Analysis of variance (ANOVA) and Tukey's test were used for comparisons. RESULTS: The bond strength values obtained with each adhesive system were as follows: XP Bond, 96.24 MPa; Adper Single Bond, 72.39 MPa; Adper SE Plus, 49.91 MPa. CONCLUSION: In terms of bond strength to dentin, conventional adhesives outperform self-etching systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mariana Almeida Mello Proença ◽  
Karime Tavares Lima da Silva ◽  
Alisson Costa e Silva ◽  
Edilausson Moreno Carvalho ◽  
José Bauer ◽  
...  

Objectives. The aim of this study was to evaluate the shear bond strength of metal brackets bonded with different universal adhesive systems containing 10-MDP and Transbond Plus Self Etching Primer after 20,000 thermal cycles. Materials and Methods. A total of 130 sound bovine teeth were used, which are divided into 5 groups (n = 26) according to the adhesive system used: All-Bond Universal (Bisco), Ambar Universal (FGM), Clearfil Universal Bond (Kuraray), Single Bond Universal (3M/ESPE), and Transbond Plus SEP (3M/ESPE) as control. The adhesives were applied for 20 seconds and bonded with a resin Transbond XT (3M/ESPE). After this, the teeth were submitted to 20,000 cycles at 5°C and 55°C. Afterwards, the shear bond strength test was performed in a universal test machine (Instron 3342). The adhesive remnant index (ARI) was evaluated under a stereomicroscope at 10x magnification and scanning electronic microscopy (SEM, Hitachi 3030). The shear bond strength data were submitted to One-Way ANOVA (α = 0.05) and the ARI to the Kruskal–Wallis test (α = 0.05). Results. Statistical analysis showed that the universal adhesive systems presented mean shear bond strength values similar to Transbond Plus SEP (p<0.05). The universal adhesive presented similar ARI values among them but differed from those of Transbond Plus SEP (p<0.001). Transbond Plus SEP presented a high ARI value when compared with the universal adhesive systems and high demineralization of enamel. Conclusions. The results show that universal adhesive systems may be used for bonding metal brackets if the orthodontist wants to maintain dental enamel health.


10.2341/08-58 ◽  
2009 ◽  
Vol 34 (2) ◽  
pp. 181-191 ◽  
Author(s):  
A. Reis ◽  
S. K. Moura ◽  
A. Pellizzaro ◽  
K. Dal-Bianco ◽  
A. M. Andrade ◽  
...  

Clinical Relevance The improvement of resin-enamel bond strengths after using Si-C paper and diamond burs for enamel preparation is material dependent. No degradation of enamel bond strength could be observed for any one-step self-etch adhesive system after 12 months of water storage.


2002 ◽  
Vol 6 (3) ◽  
pp. 155-160 ◽  
Author(s):  
Christoph Kaaden ◽  
John Powers ◽  
Karl-Heinz Friedl ◽  
Gottfried Schmalz

2010 ◽  
Vol 35 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Hérica Adad Ricci ◽  
Mariane Emi Sanabe ◽  
Carlos Alberto de Souza Costa ◽  
Josimeri Hebling

Objective: The purpose of this study was to compare the immediate microtensile bond strength (µTBS) of two-step etch-and-rinse adhesive systems to the dentin of primary and permanent teeth. Study Design: Non-carious human teeth (12 primary molars and 12 premolars) were assigned to 3 groups according to the adhesive system. The adhesive systems were applied to flat superficial coronal dentin surfaces etched with phosphoric acid and composite resin blocks were built up. The teeth were sectioned to produce beam-shaped specimens with 0.81 mm2 cross-sectional area subjected to µTBS testing. µTBS data were analyzed statistically by ANOVA and Tukey’s test (a= 0.05). Results: The adhesive systems produced statistically similar mean µTBS to each other (p&gt;0.05) and no significant differences (p&gt;0.05) were found when the same material was applied to primary or permanent tooth dentin. The mean µTBS values (MPa) obtained were: Prime& Bond NT: 41.7±14.4 (permanent) and 40.8±13.4 (primary); Single Bond: 42.9±8.6 (permanent) and 41.4±11.9 (primary); Excite DSC: 46.3±11.3 (permanent teeth) and 43.4±12.0 (primary). Conclusion:There was no difference in the immediate µTBS of two-step etch-and-rinse adhesive systems when applied to the dentin of primary and permanent teeth.


2005 ◽  
Vol 16 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Eduardo Batista Franco ◽  
Lawrence Gonzaga Lopes ◽  
Paulo Henrique Perlatti D'Alpino ◽  
José Carlos Pereira

The purpose of this study was to investigate the effect of pH of different adhesive systems on the polymerization of a chemically cured composite resin (Adaptic - AD), by means of tensile bond strength testing. The adhesive systems tested were: ARM, Prime & Bond 2.1 (PB), Scotchbond Multi Purpose (SMP) and Single Bond (SB). Bond strength at the resin/adhesive system/resin interface was assessed. Five groups (n=5) were formed, according to following configuration: G1: AD/ARM/AD; G2: AD/PB/AD; G3: AD/SMP/AD; G4: AD/SB/AD; G5: AD/AD (no adhesive). A two-mold stainless steel matrix with a cone-shaped opening (1-mm-thick; 4 mm in diameter) was used to obtain resin discs. AD resin was inserted into the first mold, left-self curing and an adhesive layer was applied onto resin surface and light-cured. The second mold was assembled over the first and was filled with the resin. After 10 min, this setting was loaded in tension in a universal testing machine running at a crosshead speed of 0.5 mm/min. Data were submitted to one-way ANOVA and Tukey's test (p<0.05). Bond strength means (kgf) were: G1: 15.23 ± 4.1; G2: 0.00 ± 0.0; G3: 16.96 ± 2.4; G4: 10.08 ± 2.7; G5: 15.44 ± 0.9. There were statistically significant differences (p<0.05) between G2-G1; G2-G3; G2-G4; G4-G1; G4-G3. The systems with the lowest pHs (PB and SB) yielded the lowest bond strength. The findings of this in vitro study demostrates that the pH of adhesive systems influences the polymerization and bond strength of chemically cured resin materials. The low pH simplified adhesive systems showed distinct degrees of incompatibility with the chemically cured resin, when compared to the conventional adhesive systems.


Sign in / Sign up

Export Citation Format

Share Document