Bond Strength of Two-Step Etch-and-Rinse Adhesive Systems to the Dentin of Primary and Permanent Teeth

2010 ◽  
Vol 35 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Hérica Adad Ricci ◽  
Mariane Emi Sanabe ◽  
Carlos Alberto de Souza Costa ◽  
Josimeri Hebling

Objective: The purpose of this study was to compare the immediate microtensile bond strength (µTBS) of two-step etch-and-rinse adhesive systems to the dentin of primary and permanent teeth. Study Design: Non-carious human teeth (12 primary molars and 12 premolars) were assigned to 3 groups according to the adhesive system. The adhesive systems were applied to flat superficial coronal dentin surfaces etched with phosphoric acid and composite resin blocks were built up. The teeth were sectioned to produce beam-shaped specimens with 0.81 mm2 cross-sectional area subjected to µTBS testing. µTBS data were analyzed statistically by ANOVA and Tukey’s test (a= 0.05). Results: The adhesive systems produced statistically similar mean µTBS to each other (p>0.05) and no significant differences (p>0.05) were found when the same material was applied to primary or permanent tooth dentin. The mean µTBS values (MPa) obtained were: Prime& Bond NT: 41.7±14.4 (permanent) and 40.8±13.4 (primary); Single Bond: 42.9±8.6 (permanent) and 41.4±11.9 (primary); Excite DSC: 46.3±11.3 (permanent teeth) and 43.4±12.0 (primary). Conclusion:There was no difference in the immediate µTBS of two-step etch-and-rinse adhesive systems when applied to the dentin of primary and permanent teeth.


2016 ◽  
Vol 27 (6) ◽  
pp. 705-711 ◽  
Author(s):  
Karina Kato Carneiro ◽  
Marcia Margarete Meier ◽  
Clenilton Costa dos Santos ◽  
Adeilton Pereira Maciel ◽  
Ceci Nunes Carvalho ◽  
...  

Abstract To evaluate the effect of incorporating niobium phosphate bioactive glass (NbG) into commercial etch-and-rinse adhesive systems, with and without silane, on their degree of conversion (DC) (%) and microtensile bond strength (μTBS). The NbG micro-filler was added to two etch-and-rinse adhesive systems: One Step (OS) and Prime & Bond (PB) at 40% concentration. The following groups were formed: control without glass addition OS; addition of unsilanized NbG (OSNbG); addition of silanized NbG (OSNbGS); control without glass PB; addition of unsilanized NbG (PBNbG); addition of silanized NbG (PBNbGS). The DC was determined using total Fourier spectroscopy reflection (FTIR/ATR). For μTBS testing, 48 human third molars (n=8) were restored and sliced to obtain specimens (0.8 mm2) and they were tested at two different time intervals: immediately and after 6 months. The fracture mode was evaluated with a stereoscopic loupe (40×) and by scanning electron microscopy (SEM). The data were subjected to ANOVA and Tukey tests (a=0.05). NbG addition did not compromise the adhesive system DC values (p>0.05). Furthermore, the NbG added to the adhesive systems did not affect μTBS values (p>0.05). Fracture occurred predominantly at the dentin-adhesive interface. NbG bioactive glass did not affect the DC or microtensile bond strength results.



2017 ◽  
Vol 41 (3) ◽  
pp. 214-218 ◽  
Author(s):  
Tathiane Larissa Lenzi ◽  
Fabio Zovico Maxnuck Soares ◽  
Rachel de Oliveira Rocha

Objective: To evaluate the effect of bonding strategy on microtensile bond strength (μTBS) of a new universal adhesive system to primary tooth dentin. Study design: Flat dentin surfaces from 25 primary molars were assigned to 5 groups according to the adhesive and bonding approach: Adper Single Bond 2 (two-step etch-and-rinse adhesive) and Clearfil SE Bond (two-step self-etch system), as controls; Scotchbond Universal Adhesive–self-etch, dry or wet-bonding etch-and-rinse strategies. Composite buildups were constructed and the teeth were sectioned to obtain bonded sticks (0.8 mm2) to be tested under tension at 1mm/min. The μTBS means were analyzed by one-way ANOVA and Tukey's tests (α = 0.05). Failure mode was evaluated using a stereomicroscope (400×). Results: Universal adhesive applied following both dry and wet-bonding etch-and-rinse strategies showed similar bond strength compared with control adhesive systems. Self-etch approach resulted in the lowest μTBS values. For all groups, adhesive/mixed failure prevailed. The percentage of premature debonded specimens was higher when the universal adhesive was used as self-etch mode. Conclusion: The universal adhesive does not share the same versatility of being used in the etch-and-rinse and self-etch approaches; however, the use of the new adhesive following either wet or dry-bonding may be a suitable option as alternative to two-step etch-and-rinse adhesive protocol.



Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4727
Author(s):  
Eri Seitoku ◽  
Shuhei Hoshika ◽  
Takatsumi Ikeda ◽  
Shigeaki Abe ◽  
Toru Tanaka ◽  
...  

This study aimed to evaluate the bonding performance of a new one-step self-etching adhesive system containing a novel hydrophilic amide monomer. Clearfil Universal Bond Quick (CUB) and Clearfil Megabond 2 (CMB) were used as the one-step and two-step adhesive systems, respectively. Flat dentin surfaces of human premolars were exposed using #600 SiC (silicon carbide) and bonded with the respective adhesives of each system. The teeth were sectioned to obtain beams (1 mm × 1 mm) after 24 h of water storage. The mean bond strength and standard deviations (MPa) on an occlusal surface were as follows: CUB: 45.9 ± 19.7 and CMB: 67.9 ± 25.3. The values for cervical ones were CUB: 56.0 ± 20.3 and CMB: 67.6 ± 16.0, respectively. In both conditions, the microtensile bond strength (μTBS) value was lower than that of CMB. As seen during the microscopic observation, no adhesive failure was observed after μTBS testing because CUB formed a firm and tight adhesive interface.



2016 ◽  
Vol 45 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Marcos Paulo Marchiori CARVALHO ◽  
Rachel de Oliveira ROCHA ◽  
Ivo KREJCI ◽  
Tissiana BORTOLOTTO ◽  
Fábio Ecke BISOGNO ◽  
...  

Abstract Introduction Increased adhesive temperature has been reported to promote solvent evaporation, reduce viscosity, and improve monomeric permeation into dentin. Objective The aim of this study was to determine the influence of different heating methods on the microtensile bond strength of an etch-and-rinse adhesive to dentin. Material and method Twenty-four caries-free extracted human third molars were transversally sectioned to expose a flat dentinal surface. The samples were etched with 37% phosphoric acid gel and divided into three groups (n = 8): 1) Control - the adhesive system (Adper Single Bond 2; 3M ESPE) was applied at room temperature; 2) Warming device - the adhesive was warmed to 37°C in a custom device before application; and 3) Warm air - the adhesive was warmed to 50°C with an air jet after application on dentin. The specimens were restored with a composite resin (Filtek Z250 A2, 3M ESPE) and prepared for microtensile bond strength testing, after 24 h in water storage. The data were subjected to one-way ANOVA and Tukey's test (p < 0.05). Result There was no significant difference among the groups (p > 0.05). The mean bond strength values in the control, the warming device, and the warm air groups were 48.5 (± 5.2), 40.35 (± 4.9), and 47.2 (± 5.3) MPa, respectively (p = 0.05). Conclusion The different heating methods had no significant influence on the immediate microtensile bond strength of an etch-and-rinse ethanol-based adhesive to dentin.



2019 ◽  
Vol 18 ◽  
pp. e191638
Author(s):  
Renally Bezerra Wanderley Lima ◽  
Maria Luiza Pontual ◽  
Venâncio Fernandes Dantas ◽  
Sônia Saeger Meireles ◽  
Ana Karina Maciel Andrade ◽  
...  

Aim: The aim of this study is to evaluate the effect of radiotherapy on the bond strength of resin-based composite restorations to dentin, performed either 24 h or 1 year before or after radiation. Methods: Ninety-six posterior teeth were randomly distributed into the following groups: IB (n = 16), irradiated teeth were restored 1 year after x-ray application; NB (n = 16), not irradiated teeth were stored for 1 year and then restored. IA (n = 32), teeth were restored and irradiated at 24 h or 1 year after the restoration. NA (n = 32), teeth were restored, not irradiated, and tested as IA. Eight samples from each group were randomly assigned to either the three-step or two-step etch-and rinse adhesive system procedure. The irradiated specimens were subjected to 60 Gy of x-ray radiation fractionally. The restored teeth were vertically sectioned, and 1-mm2 resin–dentin sticks were obtained and submitted to the microtensile bond strength test. The bond strength data were analyzed by two-way analysis of variance (ANOVA) followed by Tukey’s test (p < 0.05). Failure modes were examined by optical microscopy and scanning electron microscopy. Results: The IB group showed lower bond strength values compared to the NB group. The bond strength values between the adhesive systems were not statistically different. Conclusion: The application of radiation dose decreased the bond strength of the adhesive restorations to dentin when the bonding procedure was conducted 1 year after in vitro radiotherapy.



Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 263 ◽  
Author(s):  
Eugenia Baena ◽  
Sandra R Cunha ◽  
Tatjana Maravić ◽  
Allegra Comba ◽  
Federica Paganelli ◽  
...  

The aim of the present study was to evaluate the effect of 0.1% chitosan (Ch) solution as an additional primer on the mechanical durability and enzymatic activity on dentine using an etch-and-rinse (E&R) adhesive and a universal self-etch (SE) adhesive. Microtensile bond strength and interfacial nanoleakage expression of the bonded interfaces for all adhesives (with or without pretreatment with 0.1% Ch solution for 1 min and air-dried for 5 s) were analyzed immediately and after 10,000 thermocycles. Zymograms of protein extracts from human dentine powder incubated with Optibond FL and Scotchbond Universal on untreated or Ch-treated dentine were obtained to examine dentine matrix metalloproteinase (MMP) activities. The use of 0.1% Ch solution as an additional primer in conjunction with the E&R or SE adhesive did not appear to have influenced the immediate bond strength (T0) or bond strength after thermocycling (T1). Zymography showed a reduction in MMP activities only for mineralized and demineralized dentine powder after the application of Ch. Application of 0.1% Ch solution does not increase the longevity of resin–dentine bonds. Nonetheless, the procedure appears to be proficient in reducing dentine MMP activities within groups without adhesive treatments. Further studies are required to comprehend the cross-linking of Ch with dentine collagen.



2008 ◽  
Vol 78 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Mona A. Montasser ◽  
James L. Drummond ◽  
Carla A. Evans

Abstract Objective: To compare rebonding of orthodontic brackets based on the hypothesis that no difference would be found between the adhesive systems with respect to shear bond strength, mode of failure, and clinical failure rates. Materials and Methods: The three adhesive systems included two self-etch primers (Transbond and M-Bond) and a conventional phosphoric acid etch (Rely-a-Bond). The sample size was 20 premolars for each adhesive system. The shear bond strength was tested 24 hours after bracket bonding with the bonding/debonding procedures repeated two times after the first debonding. Bond strength, adhesive remnant index (ARI), and failure sites were evaluated for each debonding. Statistical analysis consisted of a two-way analysis of variance (ANOVA) followed by Scheffè analysis. The clinical portion evaluated 15 patients over a 12-month period. Results: The mean shear bond strengths after the first, second, and third debondings for Rely-a-Bond were 8.4 ± 1.8, 10.3 ± 2.4, and 14.1 ± 3.3 MPa, respectively; for Transbond 11.1 ± 4.6, 13.6 ± 4.5, and 12.9 ± 4.4 MPa, respectively; and for M-Bond 8.7 ± 2.7, 10.4 ± 2.4, and 12.4 ± 3.4 MPa, respectively. After the three debondings the mean shear bond strength increased significantly from the first to the third debonding for Rely-a-Bond and M-bond (P ≤ .001), but did not change for Transbond (P = .199). Conclusions: The original hypothesis is not rejected. The two self-etching primers showing higher or comparable bond strength to the conventional phosphoric etch with less adhesive remnant on the enamel surface after the first debonding. With repeated bonding/debonding, the differences in the bond strength, ARI, and failure site were not significantly different. There was no difference in the clinical performance of the three adhesive systems (P = .667).



2017 ◽  
Vol 20 (4) ◽  
pp. 55
Author(s):  
Rafael Avellar de Carvalho Nunes ◽  
Flávia Lucisano Botelho do Amaral ◽  
Fabiana Mantovani Gomes França ◽  
Cecilia Pedroso Turssi ◽  
Roberta Tarkany Basting

<p class="Corpo"><strong>Objective</strong>: the aim of the present study was to evaluate the influence of adding different concentrations of chitosan to an experimental two-step etch-and-rinse adhesive system on the bond strength and failure mode to dentin. <strong>Material</strong> <strong>and</strong> <strong>Methods</strong>: thirty-two flat dentin surfaces were obtained from extracted human third molars and divided into four groups  (n=8) for application of the adhesive systems: AD - conventional two-step adhesive system (Adper Single Bond 2); EXP – experimental two-step etch-and-rinse adhesive system; Chi0.2% - EXP with addition of 0.2% Chitosan; Chi0.5% - EXP with addition of 0.5% Chitosan. Resin composite build-ups were made and the composite/dentin specimens were sectioned to obtain rectangular beams with a bond area of approximately 1mm<sup>2</sup>. After 24 hours, the sticks were submitted to microtensile bond strength tests in a universal test machine. The fracture pattern was evaluated under a stereoscopic loupe at 40X magnification. <strong>Results</strong>: one-way analysis of variance showed that the type of adhesive system had no significant effect on the bond strength values (p = 0.142), showing the mean bond strength values (standard deviation), in MPa, for the groups as follows: AD=20.1 (5.4); EXP=16.6 (2.3); Chi0.2%=16.1 (2.8); Chi0.5%=16.9 (2.3). In all the groups there was predominance of cohesive fractures in dentin, representing 68 to 82% of the failure modes. <strong>Conclusion</strong>: the addition of 0.2 or 0.5% of chitosan had no influence on the bond strength and failure mode of an experimental two-step etch-and-rinse adhesive system to dentin.</p><p class="Corpo"><strong>Keywords</strong></p><p class="Corpo">Chitosan; Dental Adhesives; Failure Mode; Microtensile Bond Strength.</p>



Author(s):  
Masoud Fallahinejad Ghajari ◽  
Mahsa Sheikholeslamian ◽  
Amir Ghasemi ◽  
Leila Simaei

Objectives: This study aimed to determine the microtensile bond strength (μTBS) of a bulk-fill composite to permanent and primary coronal dentin using a universal adhesive in self-etch and total-etch modes. Materials and Methods: This in-vitro study was performed on 52 occlusal dentinal surfaces of human primary and permanent teeth. The crowns were cut to the gingival level. The 48 prepared dentin sections were randomly assigned to the following groups (n=13): A: Primary/Total-etch, B: Primary/Self-etch, C: Permanent/Total-etch, and D: Permanent/Self-etch. In groups A and C, after etching for 15 seconds, two layers of a universal bonding (Futurabond U) were applied and cured for 10 seconds. All samples were filled with a bulk-fill composite (x-trafil; VOCO) and cured for 40 seconds. The samples were cut to a bar-shaped dentin block with the dimensions of 1×1×1 mm3, and after 10,000 thermocycles, the μTBS test was accomplished at a crosshead speed of 1 mm/minute. The mean and standard deviation (SD) of μTBS were calculated, and the data were analyzed using two-way analysis of variance (ANOVA) and Fisher's exact test. Results: The mean μTBS was as follows: A: 15.03±2.0279, B: 11.11±2.4423, C: 23.50±4.8165, and D: 16.26±6.3200 MPa. Futurabond U showed a higher μTBS in the total-etch mode (P<0.001). The permanent teeth had greater μTBS than the primary teeth (P<0.001). Similar percentages of failure modes were observed in the total-etch groups but in the self-etch groups, most failures were in the form of adhesive and mixed. Conclusion: Greater μTBS was observed in the permanent teeth with the total-etch technique.



2021 ◽  
Vol 15 (2) ◽  
pp. 82-86
Author(s):  
Mahmoud Bahari ◽  
Siavash Savadi Oskoee ◽  
Mohammad Esmaeel Ebrahimi Chaharom ◽  
Nasim Molayi

Background. Contamination of dentin surface is one of the common problems in restorative dentistry. The aim was to investigate the effects of different surface contaminators on the dentin shear bond strength (SBS) of universal adhesive system (UAS) applied in etch-and-rinse (ER) and self-etch (SE) strategies. Methods. One hundred forty-four maxillary anterior sound human teeth were divided into six groups based on the types of surface contaminators: no surface contaminator (control) and experimental groups contaminated with blood, saliva, aluminium chloride (ALC), ferric sulphate (FS), and caries disclosing agent (CDA). Then, each group was further subdivided into two, based on the application strategy of UAS (ER and SE). After applying the adhesive according to the manufacturer’s instructions, and bonding cylindrical composite samples, the SBS was measured. The data were analysed using two-way ANOVA, Tukey’s HSD test and t test (P<0.05). Results. The SBS in all contaminated groups, except for CDA, was significantly lower in both ER and SE strategies compared to control group (P<0.05). A comparison between the application strategies revealed that ER and SE were only significantly different in the FS contaminated group (P<0.05). Conclusion. All tested contaminators, except CDA, significantly decreased SBS of UAS in both ER and SE strategies.



Sign in / Sign up

Export Citation Format

Share Document