Composite Resin to Yttria Stabilized Tetragonal Zirconia Polycrystal Bonding: Comparison of Repair Methods

2012 ◽  
Vol 37 (3) ◽  
pp. 263-271 ◽  
Author(s):  
P. Cristoforides ◽  
R. Amaral ◽  
L. G. May ◽  
M. A. Bottino ◽  
L. F. Valandro

SUMMARY Purpose The purpose of the current study was to evaluate different approaches for bonding composite to the surface of yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics. Methods One hundred Y-TZP blocks were embedded in acrylic resin, had the free surface polished, and were randomly divided into 10 groups (n=10). The tested repair approaches included four surface treatments: tribochemical silica coating (TBS), methacryloxydecyldihidrogenphosphate (MDP)–containing primer/silane, sandblasting, and metal/zirconia primer. Alcohol cleaning was used as a “no treatment” control. Surface treatment was followed by the application (or lack thereof) of an MDP-containing resin cement liner. Subsequently, a composite resin was applied to the ceramic surface using a cylindrical mold (4-mm diameter). After aging for 60 days in water storage, including 6000 thermal cycles, the specimens were submitted to a shear test. Analysis of variance and the Tukey test were used for statistical analyses (α=0.05). Results Surface treatment was a statistically significant factor (F=85.42; p<0.0001). The application of the MDP-containing liner had no effect on bond strength (p=0.1017). TBS was the only treatment that had a significantly positive effect on bond strength after aging. Conclusion Considering the evaluated approaches, TBS seems to be the best surface treatment for Y-TZP composite repairs. The use of an MDP-containing liner between the composite and Y-TZP surfaces is not effective.

2014 ◽  
Vol 39 (3) ◽  
pp. 291-300 ◽  
Author(s):  
MA Bottino ◽  
C Bergoli ◽  
EG Lima ◽  
SMS Marocho ◽  
RO Souza ◽  
...  

SUMMARY Purpose To evaluate the effects of two surface treatments, aging, and two resin cements on shear bond strength between dentin and yttrium-stabilized tetragonal zirconia polycrystal ceramic (Y-TZP). Materials and Methods Eighty human molars were embedded in acrylic resin and sectioned 3 mm below the occlusal plane. These teeth and 80 cylindrical Y-TZP specimens (height, 4 mm; diameter, 3.4 mm) were divided into eight groups (n=10) using the following factors: Y-TZP surface treatment (Vi: low-fusing porcelain [vitrification] + hydrofluoric acid etching + silanization or Si: tribochemical silicatization); cementation strategies (PF: Panavia or CC: Clearfil); and storage (nonaging or aging). Bonding surfaces of 40 Y-TZP specimens received Vi treatment, and the rest received Si treatment. Half of the ceramic-tooth assemblies were cemented with Panavia, the rest with Clearfil. Shear tests were executed using 0.4-mm–thick wire at 0.5 mm/min. Data were analyzed by three-way analysis of variance and Tukey test (α=0.05). Fractures were analyzed. Results Y-TZP surface treatments did not affect bond strength (p=0.762, Vi = Si), while resin cements (p<0.001, Panavia > Clearfil) and aging (p=0.006, nonaging > aging) showed a significant effect. Most failures were in adhesive at dentin-cement interfaces; no failure occurred between zirconia and cement. Conclusion When Y-TZP ceramic is bonded to dentin, the weakest interface is that between dentin and resin cement. The resin cement/Y-TZP interface was less susceptible to failures, owing to Y-TZP surface treatments.


2018 ◽  
Vol 21 (4) ◽  
pp. 377
Author(s):  
Vinícius Felipe Wandscher ◽  
Luana Brondani ◽  
Gabriel Kalil Rocha Pereira ◽  
Renata Marques De Melo

<p><strong>Objective:</strong> To evaluate the bond strength of different repair treatments for composite resin to aged Y-TZP ceramics.  <strong>Material and Methods:</strong> Zirconia blocks were cut into smaller specimens, sintered according to manufacturer’s recommendations (final dimensions of 4×4×3 mm), and randomly allocated into nine groups (n=15) according to the surface treatment and presence/absence of aging of the substrate (subjected to low-temperature degradation - LTD), as follows: without LTD (Control: without treatment; TBS: tribochemical silica coating + silane + adhesive); with LTD (Control-LTD: without treatment; TBS-LTD: TBS with hydrothermal degradation; MoS-LTD: Monobond S + adhesive; MoP-LTD: Monobond Plus + adhesive; MZP-LTD: Metal/Zirconia Primer + adhesive; USB-LTD: Single Bond Universal; AP-LTD: Alloy primer + adhesive). LTD was simulated in an autoclave (134 °C, 2 bar, 5 h). The ceramic blocks were embedded in PVC cylinders with a self-curing acrylic resin; each surface treatment protocol was performed; a composite resin cylinder (Æ: 3.25 mm and height: 3 mm) was then build-up using split metallic matrices. All the specimens were aged (thermocycling + storage in water for 90 days) and subjected to the shear bond strength test using a universal testing machine (1 mm/min). The failure mode was classified into four types: adhesive, composite resin cohesive fracture, ceramic cohesive fracture, and mixed. The bond strength values were subjected to Mann–Whitney test. <strong>Results:</strong> Only air-abraded samples (TBS and TBS–LTD) survived thermocycling. More than 80% of the samples of the other groups presented pre-test failures. TBS groups presented higher values of bond strength (3.94) compared to TBS-LTD (0.96). The predominant type of failure for the surviving samples were adhesive. <strong>Conclusion:</strong> Air particle abrasion is mandatory to improve the bond strength of the Y-TZP substrate; an aged substrate presents an even more unfavorable scenario for adhesion.</p><p><strong>Keywords</strong></p><p> Dental prosthesis repair; Hydrothermal degradation; Zirconia; Shear bond strength; Sandblasting.</p><p> </p>


2014 ◽  
Vol 602-603 ◽  
pp. 602-605
Author(s):  
Xiao Li Feng ◽  
Ruo Yu Liu ◽  
Yan Li Zhang ◽  
Liang Jiao Chen ◽  
Yao Kun Zhang ◽  
...  

To evaluate the effect of three surface treatments and two resin cements on microtensile bond strength of zirconia to dentin. Sixty human molars were embedded in acrylic resin and sectioned 3 mm below the occlusal plane. Teeth specimens and sixty zirconia specimens were randomized into 3 groups according to the following surface treatments (n=20): no treatment (control), sandblasting and silane application (SB+SI), sandblasting then silica coating and silane application (SB+SC+SI). In each group, half of the ceramic-tooth assemblies were cemented with PanaviaTM F (Kurary Dental), the rest with RelyX Unicem (3M ESPE). All specimens were cut into microtensile sticks that were loaded in tension until failure. Data were analyzed using two-way ANOVA and Tukey’s HSD test (α=0.05). The SB+SC+SC group presented higher values than SB+SI and the control group (P<0.05). Bond strength in PanaviaTM F groups were significantly higher than those in RelyX Unicem regardless of the surface treatment (P<0.05). Data indicated that both surface treatment and resin cement have significant effects on bond strength of zirconia to dentin.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Patrapan Juntavee ◽  
Hattanas Kumchai ◽  
Niwut Juntavee ◽  
Dan Nathanson

Objective. This study evaluated the effect of ceramic surface treatments on bond strength of metal brackets to machinable ceramics and veneering porcelain using different adhesive resins. Materials and methods. Machined ceramic specimens (10 × 10 × 2 mm) were prepared from Vitablocs mark II (Vita) and IPS e.max® CAD (Ivoclar). Layered porcelain fused to metal (IPS d.Sign®, Ivoclar) was used to fabricate PFM specimens (n = 60/group). Half of specimens were etched (9.6% HF, 15 sec), and the rest were nonetched. Three resin bonding systems were used for attaching metal brackets (Victory series™ APC II, 3M) to each group (n = 10): Transbond™ XT (3M), Light Bond™ (Reliance), or Blugloo™ (Ormco), all cured with LED curing unit (Bluephase G1600, Vivadent) for 50 s each. Specimens were immersed in deionized water at 37°C for 24 hours prior to shear bond testing (Instron) at crosshead speed of 0.5 mm/min. Debond surface of ceramic and bracket base was examined for failure mode (FM), Ceramic Damage Index (CDI), and Adhesive Remnant Index (ARI). ANOVA and post hoc multiple comparisons were used to analyze the differences in bond strength. The chi-squared test was used to determine significance effect of FM, CDI, and ARI. Results. Significant differences in shear bond strength among group were found (p≤0.05) related to ceramic, surface treatment, and resin cement. Conclusion. Bond strength of bracket to ceramic is affected by type of ceramic, resin cement, and ceramic surface conditioning. Etching ceramic surface enhanced ceramic-bracket bond strength. However, bond strengths in nontreated ceramic surface groups were still higher than bond strength required for bonding in orthodontic treatment.


2007 ◽  
Vol 330-332 ◽  
pp. 1365-1368
Author(s):  
W.H. Kim ◽  
H.J. Lee ◽  
Keun Woo Lee ◽  
Kwang Mahn Kim ◽  
Kyoung Nam Kim ◽  
...  

The purpose of this study was to evaluate the shear bond strength of composite resin to 4 different all-ceramic coping materials with 3 different surface treatments after thermocycling and without thermocycling. Three different surface treatments - sandblasting with 50 ㎛ alumina particles (AB); sandblasting with 50 ㎛ alumina particles and acid etching with 4% hydrofluoric acid (AE); sandblasting with 50 ㎛ alumina particles and 30 ㎛ alumina particles with tribochemical silica coating (SI) and silane application - were used on four different all-ceramic; Feldspatic ceramic (Duceram Plus); Lithium disilicate ceramic (IPS Empress2); Alumica ceramic (In-Ceram Alumina); Zirconia ceramic (Zi-Ceram) - substrates. Shear bond strength of restorative composite resin to substrate was tested after thermocycling and without thermocycling (n=10). Each specimen was subjected to a shear load at a crosshead speed of 2 ㎜/min until fracture. Two-way analysis of variance and Duncan multiple comparison test (α =0.05) were used to analyze the bond strength values. There were significant differences in the bond strengths for ceramic types (P<.001), surface treatments (P<.001), and thermocycling (P<.001). The Duncan analysis showed that the Si specimens had significantly higher bonding strengths than other specimens. The bond strength of composite resin decreased after thermocycling.


2019 ◽  
Vol 18 ◽  
pp. e190918
Author(s):  
Michele Mirian May ◽  
Ana Maria Estivalete Marchionatti ◽  
Luiz Felipe Valandro ◽  
Edson Luiz Foletto ◽  
Lucio Strazzabosco Dorneles ◽  
...  

Aim: This study evaluated the effect of surface treatments of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics on their bond strength to a resin cement. Methods: Seventy zirconia blocks (6 × 6 × 2 mm3, IPS e.max ZirCAD) were assigned into 7 groups (n=10) – as-sintered (AS), no treatment; tribochemical silica coating + silanization (TBS; Cojet-sand; ProSil); airabrasion with 45 μm alumina particles + universal primer (AAP; Monobond®Plus); fusion sputtering (FS); SiO2 nanofilm + silanization (SN; ProSil); FS+SN+ silanization (FSSN; ProSil); FS+SN+Universal Primer (FSSNP; Monobond®Plus). Afterwards, a resin cement (RelyX™ ARC) was applied inside cylinders (Ø = 0.96 mm × 1 mm height) placed on the zirconia surfaces. Microshear bond strength tests (μSBS) were carried out (1 mm/min). Failure and phase transformation analysis were performed. Bond strength data (MPa) were subjected to Kruskal-Wallis/Mann Whitney tests. Results: TBS (27 ± 1.2) and AAP (24.7 ± 0.8) showed higher bond strengths than the other groups, followed by FSSNP (15.5 ± 4.2) and FSSN (13.3 ± 3.6). FS (3.4 ± 0.44) and SN (9.5 ± 2.7) showed the lowest values (p < 0.001). Most of the specimens exhibited an adhesive failure. Conclusion: Air-abrasion by silica-coated alumina particles followed by silanization or by alumina particles followed by universal primer resulted in the highest resin bond strength to zirconia. Fusion sputtering and silica nanofilm deposition induced low strengths. However, when these methods are applied in combination and with a primer (FSSN and FSSNP), higher bond strengths may be achieved. Low bond strengths are obtained when no zirconia treatment is performed.


2015 ◽  
Vol 19 (2) ◽  
pp. 101-112
Author(s):  
Emek Akkuş ◽  
Sebnem Begum Turker

SUMMARYObjectives: To compare the effects of airborne-particle abrasion (APA) and tribochemical silica coating (TSC) surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surfaceMaterials and Methods: Prefabricated Cercon and ZirkonZahn specimens treated with Al2O3 APA and TSC (Cojet, 3M ESPE) were luted on a dentin surface with Panavia F 2.0 (Kuraray, Japan) and Multilink Automix (Ivoclar Vivadent, Liechstein). The specimens were immersed in distilled water (37°C) for 30 days and then loaded in a universal test machine with a crosshead speed of 1 mm/min. Shear bond strength at failure was measured and recorded in N. The data were analysed by Mann-Whitney-U test (p<0.005) and by Chi-square test.Results: It’s demonstrated that the surface treatment affected the bond strength of all specimens. The mean bond strength values of the 2 zirconia systems were nearly the same. Shear bond strength of Cercon specimens treated with Cojet System, luted with Panavia 2.0 (242, 77 ± 53, 17 N were found to be significantly higher (p=0.04) than the other specimens. Fractures were observed at the interface between the ceramic surface and the cements or within the cements.Conclusion: There were no statically significant differences between zirconium systems (Cercon and Zirkonzahn). The specimens luted with Panavia F 2.0 showed higher shear bond strength values than the specimens luted with Multilink Automix. Panavia F 2.0 cement could be used with TSC, when the additive retention was needed.


2018 ◽  
Vol 29 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Arthur Magno Medeiros de Araújo ◽  
Ana Beatriz do Nascimento Januário ◽  
Dayanne Monielle Duarte Moura ◽  
João Paulo Mendes Tribst ◽  
Mutlu Özcan ◽  
...  

Abstract This study evaluated the effectiveness of a multi-mode adhesive (SBU-Scotch Bond Universal/3M) as a substitute for silica coating and silane application on the bonding of zirconia ceramics to resin cement. One-hundred and twenty sintered zirconia ceramic blocks (5 x 5 x 5 mm) were obtained, finished by grounding with silicon carbide paper (#600, #800, #1000 and #1200) and randomly divided into 12 groups (n=10) in accordance with the factors “surface treatment” (ScSi - silicatization + silanization; ScSBU - silicatization + SBU; SBU - SBU without photoactivation and SBUp - SBU photoactivated) and “ceramic” (Lava / 3M ESPE, Ceramill Zirconia / Amann Girrbach and Zirkonzahn / Zirkonzahn). Dual resin cement cylinders (RelyX Ultimate/3M ESPE) were subsequently produced in the center of each block using a silicon matrix (Ø=2 mm, h=5 mm) and photoactivated for 40 s (1200 mW/cm2). The samples were stored for 30 days in distilled water (37ºC) and submitted to shear bond strength test (1 mm/min, 100 KgF). Data (MPa) were analyzed under ANOVA (2 levels) and Tukey test (5%). Complementary analyzes were also performed. ANOVA revealed that only the factor “surface treatment” was significant (p=0.0001). The ScSi treatment (14.28A) promoted statistically higher bond strength values than the other ScSBU (9.03B), SBU (8.47B) and SBUp (7.82B), which were similar to each other (Tukey). Failure analysis revealed that 100% of the failures were mixed. The silica coating followed by the silanization promoted higher bond strength values of resin cement and ceramic, regardless of the zirconia ceramic or SBU.


2013 ◽  
Vol 18 (4) ◽  
pp. 29-34 ◽  
Author(s):  
Josiane Xavier de Almeida ◽  
Mauren Bitencourt Deprá ◽  
Mariana Marquezan ◽  
Luciana Borges Retamoso ◽  
Orlando Tanaka

OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30) according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa) were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI) ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.


Sign in / Sign up

Export Citation Format

Share Document