scholarly journals Effect of several repair techniques on the bond strength between composite resin and degraded Y-TZP ceramic

2018 ◽  
Vol 21 (4) ◽  
pp. 377
Author(s):  
Vinícius Felipe Wandscher ◽  
Luana Brondani ◽  
Gabriel Kalil Rocha Pereira ◽  
Renata Marques De Melo

<p><strong>Objective:</strong> To evaluate the bond strength of different repair treatments for composite resin to aged Y-TZP ceramics.  <strong>Material and Methods:</strong> Zirconia blocks were cut into smaller specimens, sintered according to manufacturer’s recommendations (final dimensions of 4×4×3 mm), and randomly allocated into nine groups (n=15) according to the surface treatment and presence/absence of aging of the substrate (subjected to low-temperature degradation - LTD), as follows: without LTD (Control: without treatment; TBS: tribochemical silica coating + silane + adhesive); with LTD (Control-LTD: without treatment; TBS-LTD: TBS with hydrothermal degradation; MoS-LTD: Monobond S + adhesive; MoP-LTD: Monobond Plus + adhesive; MZP-LTD: Metal/Zirconia Primer + adhesive; USB-LTD: Single Bond Universal; AP-LTD: Alloy primer + adhesive). LTD was simulated in an autoclave (134 °C, 2 bar, 5 h). The ceramic blocks were embedded in PVC cylinders with a self-curing acrylic resin; each surface treatment protocol was performed; a composite resin cylinder (Æ: 3.25 mm and height: 3 mm) was then build-up using split metallic matrices. All the specimens were aged (thermocycling + storage in water for 90 days) and subjected to the shear bond strength test using a universal testing machine (1 mm/min). The failure mode was classified into four types: adhesive, composite resin cohesive fracture, ceramic cohesive fracture, and mixed. The bond strength values were subjected to Mann–Whitney test. <strong>Results:</strong> Only air-abraded samples (TBS and TBS–LTD) survived thermocycling. More than 80% of the samples of the other groups presented pre-test failures. TBS groups presented higher values of bond strength (3.94) compared to TBS-LTD (0.96). The predominant type of failure for the surviving samples were adhesive. <strong>Conclusion:</strong> Air particle abrasion is mandatory to improve the bond strength of the Y-TZP substrate; an aged substrate presents an even more unfavorable scenario for adhesion.</p><p><strong>Keywords</strong></p><p> Dental prosthesis repair; Hydrothermal degradation; Zirconia; Shear bond strength; Sandblasting.</p><p> </p>

2016 ◽  
Vol 18 (2) ◽  
pp. 109
Author(s):  
M.T. Muñoz MSc ◽  
E. Reales DDS ◽  
L.H.M. Prates DDS, MSc, PhD ◽  
C.A.M. Volpato DDS, MSc, PhD

The aim of this study was to compare the shear bond strength between acrylic resin teeth and autopolymerizing acrylic resin repairs after different surface treatments. Seventy-two upper anterior acrylic resin denture teeth (MFT, Vita, Germany) were selected. Specimens were randomly assigned into six groups (n=12): G1-C, without surface treatment (control); G2-M, methylmetacrylate monomer (Jet, Clássico, Brazil) application; G3-A treatment with methylmetacrylate and metiletilcetone-based bonding agent (Vitacoll, Vita, Germany). The surface of G4-OA, G5-OAM and G6-OAA was airborne-particle abraded with aluminum oxide (Polidental, Wilson, Brazil); being repeated the treatments respectively of groups G1-C, G2-M e G3-A. All groups were then repaired with autopolymerizing acrylic resin (Jet, Clássico, Brazil). Shear bond strength test was performed using an universal testing machine (Instron 4444). Two-way ANOVA and post hoc Tukey’s analysis (p<0,05) were used for statistical comparison. The shear bond strengths of groups G4-OA, G5-OAM and G6-OAA were significantly higher (p<0,05) than that of groups G1-C, G2-M and G3-A. The shear bond strength of Group G3-A were significantly higher (p<0,05) than that of groups G1-C and G2-M. In conclution, chemical treatments in combination with bondig agents showed significant improvements in bond strength without aluminum oxide treatment. More significantly, surface treatment with aluminum oxide particles resulted in the highest bond strength values for acrylic resin teeth repaired with autopolymerizing acrylic resin. 


2021 ◽  
Vol 10 (40) ◽  
pp. 33-37
Author(s):  
Joyce de Figueiredo Meira Barbosa ◽  
Lara Pepita de Souza Oliveira ◽  
Marcelo Nascimento Bruce ◽  
Jonas Alves Oliveira ◽  
Ligia Regina Mota Vasconcelos ◽  
...  

Acrylic denture teeth may suffer fracture or wear requiring the need for repair. This study aimed to evaluate the shear bond strength between acrylic resin artificial teeth restored with composite resin (with two different surface treatments) and acrylic resin (AR), simulating repair with these materials. Thirty artificial incisors were included by the palatal side in a circular microwave-polymerized AR base and polished on their buccal side with 120 and 320 grit sandpaper in a metallographic polisher and, then, divided into three groups: (I) restoration with self-cured AR; (II) conventional restoration with Z-100 composite resin with application of acid etching and Single Bond-3M adhesive; and (III) restoration with Z-100 composite resin with submersion for 30 seconds in acetone and application of Single Bond-3M adhesive. Shear bond strength tests were performed in a Universal Testing Machine (Instron). The results were submitted to ANOVA and Tukey (p<0.05) tests, in which Group I (33.26MPa ±10.76) and Group III (22.24MPa ±13.13) showed no statistically significant difference, but both were superior to Group II (10.31MPa ±5.62), which showed a lower value of shear bond strength. It can be concluded that composite resin restoration with acetone pretreatment can be a viable alternative for repair.


2013 ◽  
Vol 18 (4) ◽  
pp. 29-34 ◽  
Author(s):  
Josiane Xavier de Almeida ◽  
Mauren Bitencourt Deprá ◽  
Mariana Marquezan ◽  
Luciana Borges Retamoso ◽  
Orlando Tanaka

OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30) according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa) were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI) ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.


2013 ◽  
Vol 3 (1) ◽  
pp. 7-10
Author(s):  
Sonu Gargava ◽  
Sabita M Ram

ABSTRACT Zirconia, a recently introduced ceramic exhibits excellent esthetic qualities and demonstrates outstanding flexural strength but its extensive use, requires a reliable bond of Zirconia with resinluting agent. Resin Zirconia bonding cannot be achieved as the material is resistant to common etching procedures used for other glass containing ceramics. With surface conditioning increased adhesion between Zirconia and resin-luting agent can be successfully achieved. Aim Aim of this study was to evaluate surface conditioning of Zirconia and its effect on bonding to resin-luting agent. Materials and Methods Fifteen blocks of Zirconia (VITA Zirconia) were fabricated in the laboratory according to manufacturer's instructions and embedded in acrylic resin to get 15 Zirconia samples. Fifteen composite resin cylinders were prepared one for each Zirconia sample. All the 15 Zirconia samples were divided into three groups of five samples each. Group A: Was kept as control with no surface conditioning done. Group B: Surface conditioning was done with 30 µ silicon dioxide. Group C: Surface conditioning was done with 110 µ aluminum oxide. Composite resin cylinders were cemented on the Zirconia samples using a resin-luting agent (Panavia F). The samples were subjected to universal testing machine to evaluate shear bond strength and the data was statistically analyzed by oneway ANOVA. Results Group A showed least shear bond strength. Shear bond strength of group C was greater than group A while group B showed highest shear bond strength. Conclusion Surface conditioning results in significant increase bond strength between Zirconia and resin-luting agent. Among the two methods surface conditioning with 30 µ silicon dioxide is much better and efficient method. How to cite this article Gargava S, Ram SM. Evaluation of Surface Conditioning of Zirconia and Its Effect on Bonding to Resin-Luting Agent. J Contemp Dent 2013;3(1):7-10.


2010 ◽  
Vol 21 (4) ◽  
pp. 322-326 ◽  
Author(s):  
Taciana Marco Ferraz Caneppele ◽  
Lucas V. Zogheib ◽  
Isabela Gomes ◽  
Andressa S. Kuwana ◽  
Clóvis Pagani

This study evaluated the influence of surface treatment on the shear bond strength of a composite resin (CR), previously submitted to the application of a temporary cement (TC), to an adhesive luting cement. Eight-four CR cylinders (5 mm diameter and 3 mm high) were fabricated and embedded in acrylic resin. The sets were divided into 6 groups (G1 to G6) (n=12). Groups 2 to 6 received a coat of TC. After 24 h, TC was removed and the CR surfaces received the following treatments: G2: ethanol; G3: rotary brush and pumice; G4: air-abrasion; G5: air-abrasion and adhesive system; G6: air-abrasion, acid etching and adhesive system. G1 (control) did not receive TC or any surface treatment. The sets were adapted to a matrix and received an increment of an adhesive luting cement. The specimens were subjected to the shear bond strength test. ANOVA and Tukeyʼs tests showed that G3 (8.53 MPa) and G4 (8.63 MPa) differed significantly (p=0.001) from G1 (13.34 MPa). The highest mean shear bond strength values were found in G5 (14.78 MPa) and G6 (15.86 MPa). Air-abrasion of CR surface associated with an adhesive system provided an effective bond of the CR to the adhesive luting cement, regardless the pre-treatment with the phosphoric acid.


2016 ◽  
Vol 18 (2) ◽  
pp. 109
Author(s):  
M.T. Muñoz MSc ◽  
E. Reales DDS ◽  
L.H.M. Prates DDS, MSc, PhD ◽  
C.A.M. Volpato DDS, MSc, PhD

The aim of this study was to compare the shear bond strength between acrylic resin teeth and autopolymerizing acrylic resin repairs after different surface treatments. Seventy-two upper anterior acrylic resin denture teeth (MFT, Vita, Germany) were selected. Specimens were randomly assigned into six groups (n=12): G1-C, without surface treatment (control); G2-M, methylmetacrylate monomer (Jet, Clássico, Brazil) application; G3-A treatment with methylmetacrylate and metiletilcetone-based bonding agent (Vitacoll, Vita, Germany). The surface of G4-OA, G5-OAM and G6-OAA was airborne-particle abraded with aluminum oxide (Polidental, Wilson, Brazil); being repeated the treatments respectively of groups G1-C, G2-M e G3-A. All groups were then repaired with autopolymerizing acrylic resin (Jet, Clássico, Brazil). Shear bond strength test was performed using an universal testing machine (Instron 4444). Two-way ANOVA and post hoc Tukey’s analysis (p<0,05) were used for statistical comparison. The shear bond strengths of groups G4-OA, G5-OAM and G6-OAA were significantly higher (p<0,05) than that of groups G1-C, G2-M and G3-A. The shear bond strength of Group G3-A were significantly higher (p<0,05) than that of groups G1-C and G2-M. In conclution, chemical treatments in combination with bondig agents showed significant improvements in bond strength without aluminum oxide treatment. More significantly, surface treatment with aluminum oxide particles resulted in the highest bond strength values for acrylic resin teeth repaired with autopolymerizing acrylic resin. 


2015 ◽  
Vol 20 (4) ◽  
pp. 57-62 ◽  
Author(s):  
Francilena Maria Campos Santos Dias ◽  
Célia Regina Maio Pinzan-Vercelino ◽  
Rudys Rodolfo de Jesus Tavares ◽  
Júlio de Araújo Gurgel ◽  
Fausto Silva Bramante ◽  
...  

OBJECTIVE: To compare shear bond strength of different direct bonding techniques of orthodontic brackets to acrylic resin surfaces.METHODS: The sample comprised 64 discs of chemically activated acrylic resin (CAAR) randomly divided into four groups: discs in group 1 were bonded by means of light-cured composite resin (conventional adhesive); discs in group 2 had surfaces roughened with a diamond bur followed by conventional direct bonding by means of light-cured composite resin; discs in group 3 were bonded by means of CAAR (alternative adhesive); and discs in group 4 had surfaces roughened with a diamond bur followed by direct bonding by means of CAAR. Shear bond strength values were determined after 24 hours by means of a universal testing machine at a speed of 0.5 mm/min, and compared by analysis of variance followed by post-hoc Tukey test. Adhesive remnant index (ARI) was measured and compared among groups by means of Kruskal-Wallis and Dunn tests.RESULTS: Groups 3 and 4 had significantly greater shear bond strength values in comparison to groups 1 and 2. Groups 3 and 4 yielded similar results. Group 2 showed better results when compared to group 1. In ARI analyses, groups 1 and 2 predominantly exhibited a score equal to 0, whereas groups 3 and 4 predominantly exhibited a score equal to 3.CONCLUSIONS: Direct bonding of brackets to acrylic resin surfaces using CAAR yielded better results than light-cured composite resin. Surface preparation with diamond bur only increased shear bond strength in group 2.


2012 ◽  
Vol 37 (3) ◽  
pp. 263-271 ◽  
Author(s):  
P. Cristoforides ◽  
R. Amaral ◽  
L. G. May ◽  
M. A. Bottino ◽  
L. F. Valandro

SUMMARY Purpose The purpose of the current study was to evaluate different approaches for bonding composite to the surface of yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics. Methods One hundred Y-TZP blocks were embedded in acrylic resin, had the free surface polished, and were randomly divided into 10 groups (n=10). The tested repair approaches included four surface treatments: tribochemical silica coating (TBS), methacryloxydecyldihidrogenphosphate (MDP)–containing primer/silane, sandblasting, and metal/zirconia primer. Alcohol cleaning was used as a “no treatment” control. Surface treatment was followed by the application (or lack thereof) of an MDP-containing resin cement liner. Subsequently, a composite resin was applied to the ceramic surface using a cylindrical mold (4-mm diameter). After aging for 60 days in water storage, including 6000 thermal cycles, the specimens were submitted to a shear test. Analysis of variance and the Tukey test were used for statistical analyses (α=0.05). Results Surface treatment was a statistically significant factor (F=85.42; p&lt;0.0001). The application of the MDP-containing liner had no effect on bond strength (p=0.1017). TBS was the only treatment that had a significantly positive effect on bond strength after aging. Conclusion Considering the evaluated approaches, TBS seems to be the best surface treatment for Y-TZP composite repairs. The use of an MDP-containing liner between the composite and Y-TZP surfaces is not effective.


2014 ◽  
Vol 08 (04) ◽  
pp. 498-503 ◽  
Author(s):  
Lucas da Fonseca Roberti Garcia ◽  
Hebert Luis Rossetto ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza

ABSTRACT Objective: To evaluate the shear bond strength of a novel calcium aluminate-based cement, EndoBinder (EB), to dentine in comparison with Grey and White Mineral Trioxide Aggregate (MTA). Materials and Methods: Root canal hemi-sections obtained from 30 extracted molar teeth were embedded in self-polymerized acrylic resin and were grounded wet in order to obtain a flat dentine surface. Next, the roots were randomly assigned into three groups (n = 10), according to the cement used, as follows: EB: EndoBinder; WMTA: White MTA and GMTA: Grey MTA. The shear bond strength test was performed using a Universal Testing Machine (0.5 mm/min) and the data were submitted to statistical analysis (1-way ANOVA and Tukey tests, P < 0.05). Results: EB presented the highest shear bond strength values; however, there was no statistically significant difference in comparison with GMTA (P > 0.05). WMTA presented the lowest mean values, which were significant in comparison with EB (P < 0.05). Conclusions: The novel calcium aluminate-based cement presented higher shear bond strength than WMTA, and should be considered as a promising alternative in endodontic therapy.


2014 ◽  
Vol 30 ◽  
pp. e38-e39
Author(s):  
M.A. Basílio ◽  
K.V. Cardoso ◽  
G.M.R.M. De Souza ◽  
E.M. Mariscal ◽  
J.N. Arioli-Filho

Sign in / Sign up

Export Citation Format

Share Document