scholarly journals The effect of Huanghe River runoff on the occurrence, transportation and speciation of mercury in the Huanghe Estuary and adjacent sea.

1990 ◽  
Vol 24 (4) ◽  
pp. 295-308 ◽  
Author(s):  
Lu Xiankun ◽  
Yang Min ◽  
Shi Jiande ◽  
Feng Xiaoju
Author(s):  
Alla Savenko ◽  
Alla Savenko ◽  
Oleg Pokrovsky ◽  
Oleg Pokrovsky ◽  
Irina Streletskaya ◽  
...  

The distribution of dissolved chemical elements (major ions, nutrients, and trace elements) in the Yenisei River estuary and adjacent water area in 2009 and 2010 are presented. These results were compared to the data obtained during previous hydrochemical studies of this region. The transport of major cations (Na, K, Mg, Ca) and some trace elements (Rb, Cs, Sr, B, F, As, Mo, U) in the estuary follows conservative mixing. Alkalinity also belongs to conservative components, however this parameter exhibits substantial spatial heterogeneity caused by complex hydrological structure of the Yenisei Bay and adjoining part of the Kara Sea formed under the influence of several sources of desalination and salty waters inflow. Concentrations of Pmin, Si, and V in the desalinized waters of photic layer decrease seaward owing to uptake by phytoplankton. The losses of these elements reach 30–57, 30, and 9% of their supply by river runoff, respectively. The content of dissolved phosphates and vanadium in the intermediate and near-bottom layers of the Yenisei River estuary strongly increases with salinity due to regeneration of precipitated organic matter, whereas silica remineralization is much less pronounced. Barium is characterized by additional input of dissolved forms in the mixing zone in the quantity comparable to that carried out by river runoff. This may be caused by its desorption from river suspended matter due to ion exchange. The transport of dissolved Al and Mn in the estuarine zone is probably controlled by the coagulation and flocculation of organic and organomineral colloids, which is indicated by a decrease in the concentration of these elements at the beginning of the estuary (31 and 56%, respectively) followed by a stable concentration further seaward.


2020 ◽  
Vol 47 (6) ◽  
pp. 913-923
Author(s):  
A. G. Geordiadi ◽  
I. P. Milyukova ◽  
E. A. Kashutina
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
A. Onuchin ◽  
Т. Burenina ◽  
А. Shvidenko ◽  
D. Prysov ◽  
A. Musokhranova

Abstract Background Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists. Influencing the components of total evaporation, forest vegetation makes a significant contribution to the process of runoff formation, but this process has specific features in different geographical zones. The issues of the influence of forest vegetation on river runoff in the zonal aspect have not been sufficiently studied. Results Based on the analysis of the dependence of river runoff on forest cover, using the example of nine catchments located in the forest-tundra, northern and middle taiga of Northern Eurasia, it is shown that the share of forest cover in the total catchment area (percentage of forest cover, FCP) has different effects on runoff formation. Numerical experiments with the developed empirical models have shown that an increase in forest cover in the catchment area in northern latitudes contributes to an increase in runoff, while in the southern direction (in the middle taiga) extensive woody cover of catchments “works” to reduce runoff. The effectiveness of geographical zonality in regards to the influence of forests on runoff is more pronounced in the forest-tundra zone than in the zones of northern and middle taiga. Conclusion The study of this problem allowed us to analyze various aspects of the hydrological role of forests, and to show that forest ecosystems, depending on environmental conditions and the spatial distribution of forest cover, can transform water regimes in different ways. Despite the fact that the process of river runoff formation is controlled by many factors, such as temperature conditions, precipitation regime, geomorphology and the presence of permafrost, the models obtained allow us to reveal general trends in the dependence of the annual river runoff on the percentage of forest cover, at the level of catchments. The results obtained are consistent with the concept of geographic determinism, which explains the contradictions that exist in assessing the hydrological role of forests in various geographical and climatic conditions. The results of the study may serve as the basis for regulation of the forest cover of northern Eurasian river basins in order to obtain the desired hydrological effect depending on environmental and economic conditions.


2021 ◽  
Vol 11 (6) ◽  
pp. 2799
Author(s):  
Yanping Chen ◽  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Yan Li ◽  
Liang Yi

The Huanghe River (Yellow River) is the most sediment laden river system in the world, and many efforts have been conducted to understand modern deltaic evolution in response to anthropological impacts. However, the natural background and its linkage to climatic changes are less documented in previous studies. In this work, we studied the sediments of core YDZ–3 and marine surface samples by grain-size analysis to retrieve Holocene dynamics of the Huanghe River delta in detail. The main findings are as follows: The mean value of sediment grain size of the studied core is 5.5 ± 0.9 Φ, and silt and sand contents are 5.2 ± 2.3% and 8.2 ± 5.3%, respectively, while the variance of clay particles is relatively large with an average value of 86.4 ± 8.5%. All grain-size data can be mathematically partitioned by a Weibull-based function formula, and three subgroups were identified with modal sizes of 61.1 ± 28.9 μm, 30.0 ± 23.9 μm, and 2.8 ± 1.6 μm, respectively. There are eight intervals with abrupt changes in modal size of core YDZ–3, which can be correlated to paleo-superlobe migration of the Huanghe River in the Holocene. Based on these observations, the presence of seven superlobes in the history are confirmed for the first time and their ages are well constrained in this study, including Paleo-Superlobes Lijin (6400–5280 yr BP), Huanghua (4480–4190 yr BP), Jugezhuang (3880–3660 yr BP), Shajinzi (3070–2870 yr BP), Nigu (2780–2360 yr BP), Qikou (2140–2000 yr BP), and Kenli (1940–1780 and 1700–1650 yr BP). By tuning geomorphological events to a sedimentary proxy derived from core YDZ–3 and comparing to various paleoenvironmental changes, we proposed that winter climate dominated Holocene shifts of the Huanghe River delta on millennial timescales, while summer monsoons controlled deltaic evolution on centennial timescales.


CATENA ◽  
2021 ◽  
Vol 203 ◽  
pp. 105327
Author(s):  
O. Yermolaev ◽  
S. Mukharamova ◽  
E. Vedeneeva
Keyword(s):  

Author(s):  
Dwi Amanda Utami ◽  
Lars Reuning ◽  
Maximillian Hallenberger ◽  
Sri Yudawati Cahyarini

AbstractKepulauan Seribu is an isolated patch reef complex situated in the Java Sea (Indonesia) and is a typical example for a humid, equatorial carbonate system. We investigate the mineralogical and isotopic fingerprint of Panggang, one of the reef platforms of Kepulauan Seribu, to evaluate differences to other carbonate systems, using isotope in combination with XRD and SEM analysis. A characteristic property of shallow water (< 20 m) sediments from Kepulauan Seribu is their increased LMC content (~ 10%) derived from some genera of rotaliid foraminifers and bivalves. The relative abundance of these faunal elements in shallow waters might be related to at least temporary turbid conditions caused by sediment-laden river runoff. This influence is also evidenced by the presence of low amounts of siliciclastic minerals below the regional wave base. Kepulauan Seribu carbonates are characterized by very low δ13C and δ18O values. This is related to the isotopically depleted riverine input. The δ13CDIC in riverine water is reduced by the contribution of 12C from riverside mangroves. Deep atmospheric convection and intensive rains contribute 18O-depleted freshwater in the river catchments, finally reducing salinity in the Java Sea. The depleted δ13C signature in carbonates is further enhanced by the lack of green algae and inorganic carbonates and abundance of coral debris. Low δ18O values in carbonates are favored by the high water temperatures in the equatorial setting. Since equatorial carbonates in SE Asia, including the Java Sea, are typically influenced by high turbidity and/or river runoff, the observed distinctively low isotope values likely are characteristic for equatorial carbonate systems in the region.


2013 ◽  
Vol 58 (4) ◽  
pp. 737-754 ◽  
Author(s):  
Mikołaj Piniewski ◽  
Frank Voss ◽  
Ilona Bärlund ◽  
Tomasz Okruszko ◽  
Zbigniew W. Kundzewicz

Sign in / Sign up

Export Citation Format

Share Document