Optical emission sensing for laser-based additive manufacturing—What are we actually measuring?

2021 ◽  
Vol 33 (1) ◽  
pp. 012010
Author(s):  
Christopher B. Stutzman ◽  
Wesley F. Mitchell ◽  
Abdalla R. Nassar
Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2426 ◽  
Author(s):  
Mirko Riede ◽  
Matthias Knoll ◽  
Christoph Wilsnack ◽  
Samira Gruber ◽  
Alba Alegre Cubillo ◽  
...  

Recently, additive manufacturing (AM) by laser metal deposition (LMD) has become a key technology for fabricating highly complex parts without any support structures. Compared to the well-known powder bed fusion process, LMD enhances manufacturing possibilities to overcome AM-specific challenges such as process inherent porosity, minor build rates, and limited part size. Moreover, the advantages aforementioned combined with conventional machining enable novel manufacturing approaches in various fields of applications. Within this contribution, the additive manufacturing of filigree flexure pivots using 316L-Si by means of LMD with powder is presented. Frictionless flexure pivot bearings are used in space mechanisms that require high reliability, accuracy, and technical cleanliness. As a contribution to part qualification, the manufacturing process, powder material, and fabricated specimens were investigated in a comprehensive manner. Due to its major impact on the process, the chemical powder composition was characterized in detail by energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma optical emission spectrometry (ICP-OES). Moreover, a profound characterization of the powder morphology and flowability was carried out using scanning electron microscopy (SEM) and novel rheological investigation techniques. Furthermore, quantitative image analysis, mechanical testing, laser scanning microscopy, and 3D shape measurement of manufactured specimens were conducted. As a result, the gained knowledge was applied for the AM-specific redesign of the flexure pivot. Finally, a qualified flexure pivot has been manufactured in a hybrid manner to subsequently ensure its long-term durability in a lifetime test bench.


Author(s):  
Wenbo Sun ◽  
Zhenhao Zhang ◽  
Wenjing Ren ◽  
Jyoti Mazumder ◽  
Jionghua (Judy) Jin

Abstract Quality assurance techniques are increasingly demanded in additive manufacturing. Going beyond most of the existing research that focuses on the melt pool temperature monitoring, we develop a new method that monitors the in-situ optical emission spectra signals. Optical emission spectra signals have been showing a potential capability of detecting microscopic pores. The concept is to extract features from the optical emission spectra via deep auto-encoders, and then cluster the features into two quality groups to consider both unlabelled and labelled samples in a semi-supervised manner. The method is integrated with multitask learning to make it adaptable for the samples collected from multiple processes. Both a simulation example and a case study are performed to demonstrate the effectiveness of the proposed method.


2019 ◽  
Vol 52 (5) ◽  
pp. 500-515 ◽  
Author(s):  
Mohammad Montazeri ◽  
Abdalla R. Nassar ◽  
Alexander J. Dunbar ◽  
Prahalada Rao

2006 ◽  
Vol 133 ◽  
pp. 499-502 ◽  
Author(s):  
M. Manclossi ◽  
J. J. Santos ◽  
J. Faure ◽  
A. Guenmie-Tafo ◽  
D. Batani ◽  
...  

2013 ◽  
Vol 22 (03) ◽  
pp. 180-187 ◽  
Author(s):  
J. Henke ◽  
J. T. Schantz ◽  
D. W. Hutmacher

ZusammenfassungDie Behandlung ausgedehnter Knochen-defekte nach Traumata oder durch Tumoren stellt nach wie vor eine signifikante Heraus-forderung im klinischen Alltag dar. Aufgrund der bestehenden Limitationen aktueller Therapiestandards haben Knochen-Tissue-Engineering (TE)-Verfahren zunehmend an Bedeutung gewonnen. Die Entwicklung von Additive-Manufacturing (AM)-Verfahren hat dabei eine grundlegende Innovation ausgelöst: Durch AM lassen sich dreidimensionale Gerüstträger in einem computergestützten Schichtfür-Schicht-Verfahren aus digitalen 3D-Vorlagen erstellen. Wurden mittels AM zunächst nur Modelle zur haptischen Darstellung knöcherner Pathologika und zur Planung von Operationen hergestellt, so ist es mit der Entwicklung nun möglich, detaillierte Scaffoldstrukturen zur Tissue-Engineering-Anwendung im Knochen zu fabrizieren. Die umfassende Kontrolle der internen Scaffoldstruktur und der äußeren Scaffoldmaße erlaubt eine Custom-made-Anwendung mit auf den individuellen Knochendefekt und die entsprechenden (mechanischen etc.) Anforderungen abgestimmten Konstrukten. Ein zukünftiges Feld ist das automatisierte ultrastrukturelle Design von TE-Konstrukten aus Scaffold-Biomaterialien in Kombination mit lebenden Zellen und biologisch aktiven Wachstumsfaktoren zur Nachbildung natürlicher (knöcherner) Organstrukturen.


Sign in / Sign up

Export Citation Format

Share Document