scholarly journals Prediction of the Blast Furnace Process by a Mathematical Model.

1992 ◽  
Vol 32 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Xuegong Bi ◽  
Krister Torssell ◽  
Olle Wijk
1992 ◽  
Vol 32 (4) ◽  
pp. 470-480 ◽  
Author(s):  
Xuegong Bi ◽  
Krister Torssell ◽  
Olle Wijk

2020 ◽  
Author(s):  
Yu. A. Chesnokov ◽  
L. A. Marshuk ◽  
I. N. Tanutrov ◽  
M. N. Sviridova

The analysis of various options for the use of alumina production wastes (red mud) and oiled scale using various methods of agglomeration to produce conditioned commercial iron is presented. Co-processing utilization of red mud and oiled scale allows to obtain raw materials with an iron content of more than 50%, which meets the modern requirements for charge materials for use in the blast furnace process. The calculation analysis carried out using a mathematical model of blast furnace process, allowed to determine the optimal proportion of the iron-containing material for the partial replacement of charge materials without reducing the technical and economic indicators of blast furnace smelting. Keywords: Bayer process, red mud, oiled scale, mathematical model, blast furnace process, metallurgical properties, complex utilization


2019 ◽  
Vol 342 ◽  
pp. 214-223 ◽  
Author(s):  
Wei Zhao ◽  
Mansheng Chu ◽  
Hongtao Wang ◽  
Zhenggen Liu ◽  
Jue Tang ◽  
...  

2020 ◽  
Vol 92 (1) ◽  
pp. 2000326
Author(s):  
Wei Zhang ◽  
Jing Dai ◽  
Chengzhi Li ◽  
Xiaobing Yu ◽  
Zhengliang Xue ◽  
...  

2013 ◽  
Vol 281 ◽  
pp. 490-495 ◽  
Author(s):  
Adji Kawigraha ◽  
Johny Wahyuadi Soedarsono ◽  
Sri Harjanto ◽  
Pramusanto

Blast furnace process is still an important process for producing pig iron. The process needs high grade iron ore and coke. The two materials can not be found easily. In addition blast furnace process needs cooking and sintering plant that produces polluted gases. Utilization of composite pellet for pig iron production can simplify process. The pellet is made of iron ore and coal. In addition the pellet can be made from other iron source and coal. This paper discusses the evolution of phase during reduction of composite pellet containing lateritic iron ore. Fresh iron ore and coal were ground to 140 mesh separately. They were mixed and pelletized. The quantity of coal added was varied from 0 %, 20 % and 29 % of pellet weight. Pellets were heated with 10 °C/minute to 1100 °C, 1200 °C, 1300 °C and 1350 °C in a tube furnace and temperature was held during 10 minutes. Heated pellets were analyzed with XRD equipment. XRD of reduced pellets showed that iron phase change with coal and temperature. Lack of coal during heating results the re-oxidation of iron phases. This process is due to replacement of reductive atmosphere by oxidative atmosphere.


Sign in / Sign up

Export Citation Format

Share Document