scholarly journals Temperature and Strain Rate Dependences of Flow Stress in Metals and Alloys in Torsional Deformation

Author(s):  
Yuzo OHTAKARA ◽  
Tadahisa NAKAMURA ◽  
Seita SAKUI
Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 880 ◽  
Author(s):  
Rongchuang Chen ◽  
Haifeng Xiao ◽  
Min Wang ◽  
Jianjun Li

In this work, hot compression experiments of 300M steel were performed at 900–1150 °C and 0.01–10 s−1. The relation of flow stress and microstructure evolution was analyzed. The intriguing finding was that at a lower strain rate (0.01 s−1), the flow stress curves were single-peaked, while at a higher strain rate (10 s−1), no peak occurred. Metallographic observation results revealed the phenomenon was because dynamic recrystallization was more complete at a lower strain rate. In situ compression tests were carried out to compare with the results by ex situ compression tests. Hot working maps representing the influences of strains, strain rates, and temperatures were established. It was found that the power dissipation coefficient was not only related to the recrystallized grain size but was also related to the volume fraction of recrystallized grains. The optimal hot working parameters were suggested. This work provides comprehensive understanding of the hot workability of 300M steel in thermal compression.


2019 ◽  
Vol 287 ◽  
pp. 3-7
Author(s):  
Yong Zhang ◽  
Qing Zhang ◽  
Yuan Tao Sun ◽  
Xian Rong Qin

The constitutive modeling of aluminum alloy under warm forming conditions generally considers the influence of temperature and strain rate. It has been shown by published flow stress curves of Al-Mg alloy that there is nearly no effect of strain rate on initial yield stress at various temperatures. However, most constitutive models ignored this phenomenon and may lead to inaccurate description. In order to capture the rate-independent initial yield stress, Peric model is modified via introducing plastic strain to multiply the strain rate, for eliminating the effect of strain rate when the plastic strain is zero. Other constitutive models including the Wagoner, modified Hockett–Sherby and Peric are also considered and compared. The results show that the modified Peric model could not only describe the temperature-and rate-dependent flow stress, but also capture the rate-independent initial yield stress, while the Wagoner, modified Hockett–Sherby and Peric model can only describe the temperature-and rate-dependent flow stress. Moreover, the modified Peric model could obtain proper static yield stress more naturally, and this property may have potential applications in rate-dependent simulations.


2011 ◽  
Vol 88-89 ◽  
pp. 674-678
Author(s):  
Shuang Zan Zhao ◽  
Xing Wang Cheng ◽  
Fu Chi Wang

Some results of an experimental study on high strain rate deformation of TC21 alloy are discussed in this paper. Cylindrical specimens of the TC21 alloys both in binary morphology and solution and aging morphology were subjected to high strain rate deformation by direct impact using a Split Hopkinson Pressure Bar. The deformation process is dominated by both thermal softening effect and strain hardening effect under high strain rate loading. Thus the flow stress doesn’t increase with strain rate at the strain hardening stage, while the increase is obvious under qusi-static compression. Under high strain rate, the dynamic flow stress is higher than that under quasi-static and dynamic flow stress increase with the increase of the strain rate, which indicates the strain rate hardening effect is great in TC21 alloy. The microstructure affects the dynamic mechanical properties of TC21 titanium alloy obviously. Under high strain rate, the solution and aging morphology has higher dynamic flow stress while the binary morphology has better plasticity and less prone to be instability under high strain rate condition. Shear bands were found both in the solution and aging morphology and the binary morphology.


Author(s):  
Roxana Baktash ◽  
Hamed Mirzadeh

The hot flow stress of a typical stainless steel was modeled by the Hollomon equation, a modified form of the Hollomon equation, and another modified form based on the Fields–Backofen equation. The coupled effect of the deformation temperature and strain rate was also taken into account in the proposed formulae by consideration of the Zener–Hollomon parameter or dependency of the constants on temperature. The modified Fields–Backofen equation was found to be appropriate for prediction of flow stress, in which the incorporation of peak strain and consideration of temperature dependencies of the strain rate sensitivity and the stress coefficient were found to be beneficial. Moreover, the simplicity of the proposed model justifies its applicability for expressing hot flow stress characterizing dynamic recrystallization (DRX).


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1614
Author(s):  
Hongqiang Liu ◽  
Zhicheng Cheng ◽  
Wei Yu ◽  
Gaotian Wang ◽  
Jie Zhou ◽  
...  

High-temperature reduction pretreatment (HTRP) is a process that can significantly improve the core quality of a billet. The existing flow stress data cannot meet the needs of simulation due to lack of high temperature data. To obtain the hot forming process parameters for the high-temperature reduction pretreatment process of 42CrMo steel, a hot compression experiment of 42CrMo steel was conducted on Gleeble-3500 thermal-mechanical at 1200–1350 °C with the rates of deformation 0.001–10 s−1 and the deformation of 60%, and its deformation behavior at elevated temperature was studied. In this study, the effects of flow stress temperature and strain rate on austenite grain were investigated. Moreover, two typical constitutive models were employed to describe the flow stress, namely the Arrhenius constitutive model of strain compensation and back propagation artificial neural network (BP ANN) model. The performance evaluation shows that BP ANN model has high accuracy and stability to predict the curve. The thermal processing maps under strains of 0.1, 0.2, 0.3, and 0.4 were established. Based on the analysis of the thermal processing map, the optimal high reduction process parameter range of 42CrMo is obtained: the temperature range is 1250–1350 °C, and the strain rate range is 0.01–1 s−1.


Sign in / Sign up

Export Citation Format

Share Document