Intake of branched chain amino acids favors post-exercise muscle recovery and may improve muscle function: optimal dosage regimens and consumption conditions

Author(s):  
Alejandra ARROYO-CEREZO ◽  
Isabel CERRILLO ◽  
Ángeles ORTEGA ◽  
María-Soledad FERNÁNDEZ-PACHÓN
Amino Acids ◽  
2019 ◽  
Vol 51 (9) ◽  
pp. 1387-1395 ◽  
Author(s):  
José Maria Estoche ◽  
Jeferson Lucas Jacinto ◽  
Mirela Casonato Roveratti ◽  
Juliano Moro Gabardo ◽  
Cosme Franklim Buzzachera ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1961 ◽  
Author(s):  
Krzysztof Durkalec-Michalski ◽  
Krzysztof Kusy ◽  
Monika Ciekot-Sołtysiak ◽  
Jacek Zieliński

The study aimed to verify the effect of intra- (beta-alanine—BA) versus extra- (alkaline agents—ALK) cellular buffering agent supplementation, combined with customarily used branched-chain amino acids (BCAAs) and creatine malate (TCM) treatment in natural training conditions. Thirty-one elite athletes (11 sprinters and 20 endurance athletes) participated in the study. Eight-week randomized double-blind, crossover, combined supplementation with BA-ALKplaBCAA&TCM and ALK-BAplaBCAA&TCM was implemented. In the course of the experiment, body composition, aerobic capacity, and selected blood markers were assayed. After BA-ALKplaBCAA&TCM supplementation, total fat-free mass increased in sprinters (p = 0.009). No other differences were found in body composition, respiratory parameters, aerobic capacity, blood lactate concentration, and hematological indices after BA-ALKplaBCAA&TCM/ALK-BAplaBCAA&TCM supplementation. The maximum post-exercise blood ammonia (NH3) concentration decreased in both groups after BA-ALKplaBCAA&TCM supplementation (endurance, p = 0.002; sprint, p < 0.0001). Also, lower NH3 concentrations were observed in endurance athletes in the post-exercise recovery period. The results of our study indicate that combined BCAA, TCM, and BA supplementation is more effective than combined BCAA, TCM and ALK supplementation for an increase in fat-free mass and exercise adaptation, but not for aerobic capacity improvement. Besides, it seems that specific exercise stimuli and the training status are key factors affecting exercise performance, even in athletes using efficient supplementation.


Author(s):  
Froukje Vanweert ◽  
Sebastiaan C. Boone ◽  
Bram Brouwers ◽  
Dennis O. Mook-Kanamori ◽  
Renée de Mutsert ◽  
...  

Abstract Aims To evaluate whether the association between plasma branched-chain amino acids (BCAA) and intrahepatic lipid (IHL) was affected by physical activity level. Furthermore, to investigate if a conventional exercise training program, a subcategory of physical activity, could lower plasma BCAA along with alterations in IHL content in patients with type 2 diabetes (T2DM) and people with nonalcoholic fatty liver (NAFL). Methods To investigate the effect of physical activity on the association between plasma BCAA and IHL content, linear regression analyses were performed in 1983 individuals from the Netherlands Epidemiology of Obesity (NEO) stratified by physical activity frequency. Furthermore, the effect of a 12-week supervised combined aerobic resistance-exercise program on plasma BCAA, insulin sensitivity (hyperinsulinemic–euglycemic clamp), and IHL (proton-magnetic resonance spectroscopy (1H-MRS)) was investigated in seven patients with T2DM, seven individuals with NAFL and seven BMI-matched control participants (CON). Results We observed positive associations between plasma valine, isoleucine and leucine level, and IHL content (1.29 (95% CI: 1.21, 1.38), 1.52 (95% CI: 1.43, 1.61), and 1.54 (95% CI: 1.44, 1.64) times IHL, respectively, per standard deviation of plasma amino acid level). Similar associations were observed in less active versus more active individuals. Exercise training did not change plasma BCAA levels among groups, but reduced IHL content in NAFL (from 11.6 ± 3.0% pre-exercise to 8.1 ± 2.0% post exercise, p < 0.05) and CON (from 2.4 ± 0.6% pre-exercise to 1.6 ± 1.4% post exercise, p < 0.05), and improved peripheral insulin sensitivity in NAFL as well by ~23% (p < 0.05). Conclusions The association between plasma BCAA levels and IHL is not affected by physical activity level. Exercise training reduced IHL without affecting plasma BCAA levels in individuals with NAFL and CON. We conclude that exercise training-induced reduction in IHL content is not related to changes in plasma BCAA levels. Trial registration Trial registry number: NCT01317576.


2018 ◽  
Vol 88 (1-2) ◽  
pp. 80-89 ◽  
Author(s):  
Zahra Shakibay Novin ◽  
Saeed Ghavamzadeh ◽  
Alireza Mehdizadeh

Abstract. Branched chain amino acids (BCAA), with vitamin B6 have been reported to improve fat metabolism and muscle synthesis. We hypothesized that supplementation with BCAA and vitamin B6 would result in more weight loss and improve body composition and blood markers related to cardiovascular diseases. Our aim was to determine whether the mentioned supplementation would affect weight loss, body composition, and cardiovascular risk factors during weight loss intervention. To this end, we performed a placebo-controlled randomized clinical trial in 42 overweight and obese women (BMI = 25–34.9 kg/m2). Taking a four-week moderate deficit calorie diet (–500 kcal/day), participants were randomized to receive BCAA (6 g/day) with vitamin B6 (40 mg/day) or placebo. Body composition variables measured with the use of bioelectrical impedance analysis, homeostatic model assessment, and plasma insulin, Low density lipoprotein, High density lipoprotein, Total Cholesterol, Triglyceride, and fasting blood sugar were measured. The result indicated that, weight loss was not significantly affected by BCAA and vitamin B6 supplementation (–2.43 ± 1.02 kg) or placebo (–1.64 ± 1.48 kg). However, significant time × treatment interactions in waist to hip ratio (P = 0.005), left leg lean (P = 0.004) and right leg lean (P = 0.023) were observed. Overall, supplementation with BCAA and vitamin B6 could preserve legs lean and also attenuated waist to hip ratio.


2007 ◽  
Vol 40 (05) ◽  
Author(s):  
AH Neuhaus ◽  
TE Goldberg ◽  
Y Hassoun ◽  
JA Bates ◽  
KW Nassauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document