Septic complication following porous hydroxyapatite cranioplasty: prosthesis retention management

Author(s):  
Corrado Iaccarino ◽  
Pier P. Mattogno ◽  
Bruno Zanotti ◽  
Silvio Bellocchi ◽  
Angela Verlicchi ◽  
...  
2021 ◽  
Author(s):  
Md Towhidul Islam ◽  
Laura Macri-Pellizzeri ◽  
Virginie Sottile ◽  
Ifty Ahmed

This paper reports on the rapid development of porous hydroxyapatite (HA) microspheres with large external pores and fully interconnected porosity.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wendy E. Brown ◽  
Brian J. Huang ◽  
Jerry C. Hu ◽  
Kyriacos A. Athanasiou

AbstractDespite the prevalence of large (>5 cm2) articular cartilage defects involving underlying bone, current tissue-engineered therapies only address small defects. Tissue-engineered, anatomically shaped, native-like implants may address the need for off-the-shelf, tissue-repairing therapies for large cartilage lesions. This study fabricated an osteochondral construct of translationally relevant geometry with robust functional properties. Scaffold-free, self-assembled neocartilage served as the chondral phase, and porous hydroxyapatite served as the osseous phase of the osteochondral constructs. Constructs in the shape and size of an ovine femoral condyle (31 × 14 mm) were assembled at day 4 (early) or day 10 (late) of neocartilage maturation. Early osteochondral assembly increased the interfacial interdigitation depth by 244%, interdigitation frequency by 438%, interfacial shear modulus by 243-fold, and ultimate interfacial shear strength by 4.9-fold, compared to late assembly. Toward the development of a bioprosthesis for the repair of cartilage lesions encompassing up to an entire condylar surface, this study generated a large, anatomically shaped osteochondral construct with robust interfacial mechanical properties and native-like neocartilage interdigitation.


Author(s):  
francesca scalera ◽  
Alessandra Quarta ◽  
David Maria Tobaldi ◽  
Robert Carlyle Pullar ◽  
Clara Piccirillo

Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is the major mineral component of human bone, but has a wide range of interesting and useful properties, and many applications beyond biomedicine. Here we produce HA-based...


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1617
Author(s):  
Silviu-Adrian Predoi ◽  
Carmen Steluta Ciobanu ◽  
Mikael Motelica-Heino ◽  
Mariana Carmen Chifiriuc ◽  
Monica Luminita Badea ◽  
...  

In the present study, a new low-cost bioceramic nanocomposite based on porous hydroxyapatite (HAp) and cetyl trimethyl ammonium bromide (CTAB) as surfactant was successfully obtained by a simple chemical co-precipitation. The composition and structure of the HAp-CTAB were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer, and N2 adsorption/desorption analysis. The capacity of HAp-CTAB nanocomposites to remove the lead ions from aqueous solutions was studied by adsorption batch experiments and proved by Langmuir and Freundlich models. The Pb2+ removal efficiency of HAp-CTAB biocomposite was also confirmed by non-destructive ultrasound studies. The cytotoxicity assays showed that the HAp-CTAB nanocomposites did not induce any significant morphological changes of HeLa cells after 24 h of incubation or other toxic effects. Taken together, our results suggests that the obtained porous HAp-CTAB powder could be used for the decontamination of water polluted with heavy metals, such as Pb2+.


2021 ◽  
Vol 11 (10) ◽  
pp. 4464
Author(s):  
Viritpon Srimaneepong ◽  
Artak Heboyan ◽  
Azeem Ul Yaqin Syed ◽  
Hai Anh Trinh ◽  
Pokpong Amornvit ◽  
...  

The loss of one or multiple fingers can lead to psychological problems as well as functional impairment. Various options exist for replacement and restoration after hand or finger loss. Prosthetic hand or finger prostheses improve esthetic outcomes and the quality of life for patients. Myoelectrically controlled hand prostheses have been used to attempt to produce different movements. The available articles (original research articles and review articles) on myoelectrically controlled finger/hand prostheses from January 1922 to February 2021 in English were reviewed using MEDLINE/PubMed, Web of Science, and ScienceDirect resources. The articles were searched using the keywords “finger/hand loss”, “finger prosthesis”, “myoelectric control”, and “prostheses” and relevant articles were selected. Myoelectric or electromyography (EMG) signals are read by myoelectrodes and the signals are amplified, from which the muscle’s naturally generated electricity can be measured. The control of the myoelectric (prosthetic) hands or fingers is important for artificial hand or finger movement; however, the precise control of prosthetic hands or fingers remains a problem. Rehabilitation after multiple finger loss is challenging. Implants in finger prostheses after multiple finger loss offer better finger prosthesis retention. This article presents an overview of myoelectric control regarding finger prosthesis for patients with finger implants following multiple finger loss.


2012 ◽  
Vol 100A (7) ◽  
pp. 1706-1715 ◽  
Author(s):  
Jing He ◽  
Tao Huang ◽  
Lu Gan ◽  
Zongke Zhou ◽  
Bo Jiang ◽  
...  

2008 ◽  
Vol 86B (1) ◽  
pp. 125-135 ◽  
Author(s):  
Qiang Fu ◽  
Mohamed N. Rahaman ◽  
Fatih Dogan ◽  
B. Sonny Bal

Sign in / Sign up

Export Citation Format

Share Document