Synthesis of Nonlinear Control Strategies via Fuzzy Logic

Author(s):  
Reza Langari
2021 ◽  
Author(s):  
Juan Carlos Bello-Robles ◽  
Oscar J. Suarez ◽  
Aldo Pardo Garcia

2017 ◽  
pp. 253-300
Author(s):  
Schurk F. Joseph ◽  
Deshpande Pradeep B. ◽  
leffew Kenneth W.

2013 ◽  
Vol 64 (3) ◽  
pp. 143-151
Author(s):  
Farid Bouchafaa ◽  
Mohamed Seghir Boucherit ◽  
El Madjid Berkouk

Voltage source multilevel inverters have become very attractive for power industries in power electronics applications during last years. The main purposes that have led to the development of the studies about multilevel inverters are the generation of output voltage signals with low harmonic distortion; the reduction of switching frequency. A serious constraint in a multilevel inverter is the capacitor voltage-balancing problem. The unbalance of different DC voltage sources of five-level neutral point clamping (NPC) voltage source inverter (VSI) constitutes the major limitation for the use of this new power converter. In order to stabilize these DC voltages, we propose in this paper to study the cascade constituted by three phases five-level PWM rectifier, a clamping bridge and five-level NPC (VSI). In the first part, we present a topology of five-level NPC VSI, and then they propose a model of this converter and an optimal PWM strategy to control it using four bipolar carriers. Then in the second part, we study a five-level PWM rectifier, which is controlled by a multiband hysteresis strategy. In the last part of this paper, the authors study shows particularly the problem of the stability of the multi DC voltages of the inverter and its consequence on the performances of the induction motors (IM). Then, we propose a solution to the problem by employed closed loop regulation using PI regulator type fuzzy logic controller (FLC). The results obtained with this solution confirm the good performances of the proposed solution, and promise to use the inverter in high voltage and great power applications as electrical traction.


2015 ◽  
pp. 787-817
Author(s):  
Saeid Pourzeynali ◽  
Shide Salimi

The main objective of this chapter is to find the optimal values of the parameters of the base isolation systems and that of the semi-active viscous dampers using genetic algorithms (GAs) and fuzzy logic in order to simultaneously minimize the buildings' selected responses such as displacement of the top story, base shear, and so on. In this study, performance of base isolation systems, and semi-active viscous dampers are studied separately as different vibration control strategies. In order to simultaneously minimize the objective functions, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solution. To study the performance of semi-active viscous dampers, the torsional effects exist in the building due to irregularities, and unsymmetrical placement of the dampers is taken into account through 3D modeling of the building.


Sign in / Sign up

Export Citation Format

Share Document