Research on brake pad surface defects detection based on deep learning

Author(s):  
Tao Zhang ◽  
Yuting Liu ◽  
Yaning Yang ◽  
Yinggu Jin
Author(s):  
Ranganath Singari ◽  
Karun Singla ◽  
Gangesh Chawla

Deep learning has offered new avenues in the field of industrial management. Traditional methods of quality inspection such as Acceptance Sampling relies on a probabilistic measure derived from inspecting a sample of finished products. Evaluating a fixed number of products to derive the quality level for the complete batch is not a robust approach. Visual inspection solutions based on deep learning can be employed in the large manufacturing units to improve the quality inspection units for steel surface defect detection. This leads to optimization of the human capital due to reduction in manual intervention and turnaround time in the overall supply chain of the industry. Consequently, the sample size in the Acceptance sampling can be increased with minimal effort vis-à-vis an increase in the overall accuracy of the inspection. The learning curve of this work is supported by Convolutional Neural Network which has been used to extract feature representations from grayscale images to classify theinputs into six types of surface defects. The neural network architecture is compiled in Keras framework using Tensorflow backend with state of the art Adam RMS Prop with Nesterov Momentum (NADAM) optimizer. The proposed classification algorithm holds the potential to identify the dominant flaws in the manufacturing system responsible for leaking costs.


2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Balakrishnan Ramalingam ◽  
Vega-Heredia Manuel ◽  
Mohan Rajesh Elara ◽  
Ayyalusami Vengadesh ◽  
Anirudh Krishna Lakshmanan ◽  
...  

Aircraft surface inspection includes detecting surface defects caused by corrosion and cracks and stains from the oil spill, grease, dirt sediments, etc. In the conventional aircraft surface inspection process, human visual inspection is performed which is time-consuming and inefficient whereas robots with onboard vision systems can inspect the aircraft skin safely, quickly, and accurately. This work proposes an aircraft surface defect and stain detection model using a reconfigurable climbing robot and an enhanced deep learning algorithm. A reconfigurable, teleoperated robot, named as “Kiropter,” is designed to capture the aircraft surface images with an onboard RGB camera. An enhanced SSD MobileNet framework is proposed for stain and defect detection from these images. A Self-filtering-based periodic pattern detection filter has been included in the SSD MobileNet deep learning framework to achieve the enhanced detection of the stains and defects on the aircraft skin images. The model has been tested with real aircraft surface images acquired from a Boeing 737 and a compact aircraft’s surface using the teleoperated robot. The experimental results prove that the enhanced SSD MobileNet framework achieves improved detection accuracy of aircraft surface defects and stains as compared to the conventional models.


Author(s):  
Prahar Bhatt ◽  
Rishi K. Malhan ◽  
Pradeep Rajendran ◽  
Brual Shah ◽  
Shantanu Thakar ◽  
...  

Abstract Automatically detecting surface defects from images is an essential capability in manufacturing applications. Traditional image processing techniques were useful in solving a specific class of problems. However, these techniques were unable to handle noise, variations in lighting conditions, and background with complex textures. Increasingly deep learning is being explored to automate defect detection. This survey paper presents three different ways of classifying various efforts. These are based on defect detection context, learning techniques, and defect localization and classification method. The existing literature is classified using this methodology. The paper also identifies future research directions based on the trends in the deep learning area.


Author(s):  
Masayuki EGUCHI ◽  
Akira KAWAMURA ◽  
Kazuya TOMIYAMA ◽  
Shigeki TAKAHASHI ◽  
Shinichiro OMACHI

Author(s):  
Hongfei Yang ◽  
Yanzhang Wang ◽  
Jiyong Hu ◽  
Jiatang He ◽  
Zongwei Yao ◽  
...  

2021 ◽  
Vol 25 (2) ◽  
pp. 463-482
Author(s):  
Yulin Mao ◽  
Shuangxin Wang ◽  
Dingli Yu ◽  
Juchao Zhao

A safe operation protocol of the wind blades is a critical factor to ensure the stability of a wind turbine. Sensors are most commonly applied for defect detection on wind turbine blades (WTBs). However, due to the high cost and the sensitivity to stochastic noise, computer vision-guided automatic detection remains a challenge for surface defect detection on WTBs in particularly, its accuracy in locating defects is yet to be optimized. In this paper, we developed a visual inspection model that can automatically and precisely classify and locate the surface defects, through the utilization of a deep learning framework based on the Cascade R-CNN. In order to obtain high mean average precision (mAP) according to the characteristics of the dataset, a model named Contextual Aligned-Deformable Cascade R-CNN (CAD Cascade R-CNN) using improved strategies of transfer learning, Deformable Convolution and Deformable RoI Align, as well as context information fusion is proposed and a dataset with surface defects categorized and labeled as crack, breakage and oil pollution is generated. Moreover to alleviate the problem of false detection under a complex background, an improved bisecting k-means is presented during the test process. The adaptability and generalization of the proposed CAD Cascade R-CNN model were validated by each type of defects in dataset and different IoU thresholds, whereas, each of the above improved strategies was verified by gradual ablation experiments. Finally experiments that compared with the baseline Cascade R-CNN, Faster R-CNN and YOLO-v3 demonstrate its superiority over these existing approaches with a maximum of 92.1% mAP.


Sign in / Sign up

Export Citation Format

Share Document