Locally Robust Feature Selection of EEG Signals for the Inter-subject Emotion Recognition

Author(s):  
Zhong Yin ◽  
Wei Zhang ◽  
Zhanpeng Zheng
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jin-Jia Wang ◽  
Fang Xue ◽  
Hui Li

Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs). Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.


2013 ◽  
Vol 52 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Abhronil Sengupta ◽  
Tathagatha Chakraborti ◽  
Amit Konar ◽  
D. N. Tibarewala

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 683 ◽  
Author(s):  
Jiahui Cai ◽  
Wei Chen ◽  
Zhong Yin

Feature selection plays a crucial role in analyzing huge-volume, high-dimensional EEG signals in human-centered automation systems. However, classical feature selection methods pay little attention to transferring cross-subject information for emotions. To perform cross-subject emotion recognition, a classifier able to utilize EEG data to train a general model suitable for different subjects is needed. However, existing methods are imprecise due to the fact that the effective feelings of individuals are personalized. In this work, the cross-subject emotion recognition model on both binary and multi affective states are developed based on the newly designed multiple transferable recursive feature elimination (M-TRFE). M-TRFE manages not only a stricter feature selection of all subjects to discover the most robust features but also a unique subject selection to decide the most trusted subjects for certain emotions. Via a least square support vector machine (LSSVM), the overall multi (joy, peace, anger and depression) classification accuracy of the proposed M-TRFE reaches 0.6513, outperforming all other methods used or referenced in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5092
Author(s):  
Tran-Dac-Thinh Phan ◽  
Soo-Hyung Kim ◽  
Hyung-Jeong Yang ◽  
Guee-Sang Lee

Besides facial or gesture-based emotion recognition, Electroencephalogram (EEG) data have been drawing attention thanks to their capability in countering the effect of deceptive external expressions of humans, like faces or speeches. Emotion recognition based on EEG signals heavily relies on the features and their delineation, which requires the selection of feature categories converted from the raw signals and types of expressions that could display the intrinsic properties of an individual signal or a group of them. Moreover, the correlation or interaction among channels and frequency bands also contain crucial information for emotional state prediction, and it is commonly disregarded in conventional approaches. Therefore, in our method, the correlation between 32 channels and frequency bands were put into use to enhance the emotion prediction performance. The extracted features chosen from the time domain were arranged into feature-homogeneous matrices, with their positions following the corresponding electrodes placed on the scalp. Based on this 3D representation of EEG signals, the model must have the ability to learn the local and global patterns that describe the short and long-range relations of EEG channels, along with the embedded features. To deal with this problem, we proposed the 2D CNN with different kernel-size of convolutional layers assembled into a convolution block, combining features that were distributed in small and large regions. Ten-fold cross validation was conducted on the DEAP dataset to prove the effectiveness of our approach. We achieved the average accuracies of 98.27% and 98.36% for arousal and valence binary classification, respectively.


Sign in / Sign up

Export Citation Format

Share Document