scholarly journals Multiple Transferable Recursive Feature Elimination Technique for Emotion Recognition Based on EEG Signals

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 683 ◽  
Author(s):  
Jiahui Cai ◽  
Wei Chen ◽  
Zhong Yin

Feature selection plays a crucial role in analyzing huge-volume, high-dimensional EEG signals in human-centered automation systems. However, classical feature selection methods pay little attention to transferring cross-subject information for emotions. To perform cross-subject emotion recognition, a classifier able to utilize EEG data to train a general model suitable for different subjects is needed. However, existing methods are imprecise due to the fact that the effective feelings of individuals are personalized. In this work, the cross-subject emotion recognition model on both binary and multi affective states are developed based on the newly designed multiple transferable recursive feature elimination (M-TRFE). M-TRFE manages not only a stricter feature selection of all subjects to discover the most robust features but also a unique subject selection to decide the most trusted subjects for certain emotions. Via a least square support vector machine (LSSVM), the overall multi (joy, peace, anger and depression) classification accuracy of the proposed M-TRFE reaches 0.6513, outperforming all other methods used or referenced in this paper.

2021 ◽  
Vol 335 ◽  
pp. 04001
Author(s):  
Didar Dadebayev ◽  
Goh Wei Wei ◽  
Tan Ee Xion

Emotion recognition, as a branch of affective computing, has attracted great attention in the last decades as it can enable more natural brain-computer interface systems. Electroencephalography (EEG) has proven to be an effective modality for emotion recognition, with which user affective states can be tracked and recorded, especially for primitive emotional events such as arousal and valence. Although brain signals have been shown to correlate with emotional states, the effectiveness of proposed models is somewhat limited. The challenge is improving accuracy, while appropriate extraction of valuable features might be a key to success. This study proposes a framework based on incorporating fractal dimension features and recursive feature elimination approach to enhance the accuracy of EEG-based emotion recognition. The fractal dimension and spectrum-based features to be extracted and used for more accurate emotional state recognition. Recursive Feature Elimination will be used as a feature selection method, whereas the classification of emotions will be performed by the Support Vector Machine (SVM) algorithm. The proposed framework will be tested with a widely used public database, and results are expected to demonstrate higher accuracy and robustness compared to other studies. The contributions of this study are primarily about the improvement of the EEG-based emotion classification accuracy. There is a potential restriction of how generic the results can be as different EEG dataset might yield different results for the same framework. Therefore, experimenting with different EEG dataset and testing alternative feature selection schemes can be very interesting for future work.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5135
Author(s):  
Ngoc-Dau Mai ◽  
Boon-Giin Lee ◽  
Wan-Young Chung

In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.


2006 ◽  
Vol 04 (06) ◽  
pp. 1159-1179 ◽  
Author(s):  
JUNG HUN OH ◽  
ANIMESH NANDI ◽  
PREM GURNANI ◽  
LYNNE KNOWLES ◽  
JOHN SCHORGE ◽  
...  

Ovarian cancer recurs at the rate of 75% within a few months or several years later after therapy. Early recurrence, though responding better to treatment, is difficult to detect. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry has showed the potential to accurately identify disease biomarkers to help early diagnosis. A major challenge in the interpretation of SELDI-TOF data is the high dimensionality of the feature space. To tackle this problem, we have developed a multi-step data processing method composed of t-test, binning and backward feature selection. A new algorithm, support vector machine-Markov blanket/recursive feature elimination (SVM-MB/RFE) is presented for the backward feature selection. This method is an integration of minimum weight feature elimination by SVM-RFE and information theory based redundant/irrelevant feature removal by Markov Blanket. Subsequently, SVM was used for classification. We conducted the biomarker selection algorithm on 113 serum samples to identify early relapse from ovarian cancer patients after primary therapy. To validate the performance of the proposed algorithm, experiments were carried out in comparison with several other feature selection and classification algorithms.


2020 ◽  
Vol 2 (1) ◽  
pp. 62
Author(s):  
Luis F. Villamil-Cubillos ◽  
Jersson X. Leon-Medina ◽  
Maribel Anaya ◽  
Diego A. Tibaduiza

An electronic tongue is a device composed of a sensor array that takes advantage of the cross sensitivity property of several sensors to perform classification and quantification in liquid substances. In practice, electronic tongues generate a large amount of information that needs to be correctly analyzed, to define which interactions and features are more relevant to distinguish one substance from another. This work focuses on implementing and validating feature selection methodologies in the liquid classification process of a multifrequency large amplitude pulse voltammetric (MLAPV) electronic tongue. Multi-layer perceptron neural network (MLP NN) and support vector machine (SVM) were used as supervised machine learning classifiers. Different feature selection techniques were used, such as Variance filter, ANOVA F-value, Recursive Feature Elimination and model-based selection. Both 5-fold Cross validation and GridSearchCV were used in order to evaluate the performance of the feature selection methodology by testing various configurations and determining the best one. The methodology was validated in an imbalanced MLAPV electronic tongue dataset of 13 different liquid substances, reaching a 93.85% of classification accuracy.


2020 ◽  
pp. 3397-3407
Author(s):  
Nur Syafiqah Mohd Nafis ◽  
Suryanti Awang

Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Hao Chao ◽  
Liang Dong ◽  
Yongli Liu ◽  
Baoyun Lu

Emotion recognition based on multichannel electroencephalogram (EEG) signals is a key research area in the field of affective computing. Traditional methods extract EEG features from each channel based on extensive domain knowledge and ignore the spatial characteristics and global synchronization information across all channels. This paper proposes a global feature extraction method that encapsulates the multichannel EEG signals into gray images. The maximal information coefficient (MIC) for all channels was first measured. Subsequently, an MIC matrix was constructed according to the electrode arrangement rules and represented by an MIC gray image. Finally, a deep learning model designed with two principal component analysis convolutional layers and a nonlinear transformation operation extracted the spatial characteristics and global interchannel synchronization features from the constructed feature images, which were then input to support vector machines to perform the emotion recognition tasks. Experiments were conducted on the benchmark dataset for emotion analysis using EEG, physiological, and video signals. The experimental results demonstrated that the global synchronization features and spatial characteristics are beneficial for recognizing emotions and the proposed deep learning model effectively mines and utilizes the two salient features.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 609 ◽  
Author(s):  
Gao ◽  
Cui ◽  
Wan ◽  
Gu

Exploring the manifestation of emotion in electroencephalogram (EEG) signals is helpful for improving the accuracy of emotion recognition. This paper introduced the novel features based on the multiscale information analysis (MIA) of EEG signals for distinguishing emotional states in four dimensions based on Russell's circumplex model. The algorithms were applied to extract features on the DEAP database, which included multiscale EEG complexity index in the time domain, and ensemble empirical mode decomposition enhanced energy and fuzzy entropy in the frequency domain. The support vector machine and cross validation method were applied to assess classification accuracy. The classification performance of MIA methods (accuracy = 62.01%, precision = 62.03%, recall/sensitivity = 60.51%, and specificity = 82.80%) was much higher than classical methods (accuracy = 43.98%, precision = 43.81%, recall/sensitivity = 41.86%, and specificity = 70.50%), which extracted features contain similar energy based on a discrete wavelet transform, fractal dimension, and sample entropy. In this study, we found that emotion recognition is more associated with high frequency oscillations (51–100Hz) of EEG signals rather than low frequency oscillations (0.3–49Hz), and the significance of the frontal and temporal regions are higher than other regions. Such information has predictive power and may provide more insights into analyzing the multiscale information of high frequency oscillations in EEG signals.


Sign in / Sign up

Export Citation Format

Share Document