Design and Analysis of a 120kW High-Speed Permanent Magnet Motor with a Novel Evaporative Cooling Configuration for Centrifugal Compressor

Author(s):  
Chongwei Duan ◽  
Hong Guo ◽  
Wei Xing ◽  
Wei Tian ◽  
Jinquan Xu
Author(s):  
James F. Walton ◽  
Hooshang Heshmat ◽  
Michael J. Tomaszewski

This paper describes the design procedures and testing program in the development of a 100 HP single shaft permanent magnet motor driven centrifugal compressor/blower using compliant foil bearings. The development program included design tradeoff studies assessing motor rotor and bearing configurations, selection of the compressor/blower, and design of the system thermal management system. This paper also describes the first portion of the test program to assess dynamics, thermal management of the system and testing to assess compressor blower flow and pressure performance up to the 50 HP level. This program demonstrates the successful integration of oil-free foil bearings, 4-pole composite wound permanent magnet motor, thermal management capabilities and a state of the art centrifugal compressor.


2016 ◽  
Vol 31 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Fengge Zhang ◽  
Guanghui Du ◽  
Tianyu Wang ◽  
Fengxiang Wang ◽  
Wenping Cao ◽  
...  

2021 ◽  
Author(s):  
Zhenning Qi ◽  
Yue Zhang ◽  
He Zhang ◽  
Xiuhe Wang ◽  
Huijun Wang ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 1508-1511
Author(s):  
Xing Hua Wang ◽  
Xue Yuan Lin ◽  
Ming Hui Li ◽  
Yu Chen ◽  
Cheng Hui Zhang

Soft ferrite has the characteristics of high permeability, high resistivity, low loss. Based on this, a new flux-weakening structure of high-speed permanent magnet motor was presented. The structure relies on changing the saturation of soft magnetic ferrite to change the equivalent magnetic resistance of permanent magnet magnetic circuit in the motor, so the main flux of the permanent magnet motor can be reduced. By the 3D Finite Element analyses, the magnetic field distribution characters in the air gap can be pointed out. The analysis results prove the flux-weakening method is presented in this paper is correct and feasible. It can provide a practical flux-weakening method of the high-speed PM motor.


Author(s):  
Dinh Hai Linh

In this paper, a type interior permanent magnet synchronous motor designs is proposed for sport scooter application to improve constant torque wide speed performance. Interior Permanent Magnet machines are widely used in automotive applications for their wide-speed range operation and low maintenance cost. An existing permanent magnet motor (commercial QS Motor) is 3 kW-3000 rpm. In order to improve torque and power in wide speed range, a IPM electric motor 5.5 kW -5000 rpm can run up to 100 km/h: An Step-Skewing Interior Permanent Magnet motor alternatives is designed and optimized in detail with optimal magnetic segment V shape. The electromagnetic charateristics of Interior Permanent Magnet motors with V shape are compared with the reference Surface Permanent Magnet motor for the same geometry parameter requirements. Detailed loss and efficiency result is also analyzed at rate and maximum speeds. A prototype motor is manufactured, and initial experimental tests are performed. Detailed comparison between Finite Element Analysis and test data are also presented. It is shown that it is possible to have an optimized Interior Permanent Magnet motor for such high-speed traction application. This paper will figure out optimal angle of magnetic V shape for maximum torque and minimum torque ripple.


2020 ◽  
Vol 56 (3) ◽  
pp. 1-5 ◽  
Author(s):  
A. Koronides ◽  
C. Krasopoulos ◽  
D. Tsiakos ◽  
M. S. Pechlivanidou ◽  
A. Kladas

2019 ◽  
Vol 13 (6) ◽  
pp. 805-811 ◽  
Author(s):  
Neethu Salim ◽  
Saurabh Prakash Nikam ◽  
Saumitra Pal ◽  
Ashok Krishnrao Wankhede ◽  
Baylon Godfrey Fernandes

Sign in / Sign up

Export Citation Format

Share Document