Field-Weakening Control Strategy of High-Speed Permanent Magnet Synchronous Motor Based on Improved Voltage Phase Angle Control

Author(s):  
Liu Yang ◽  
Guoqiang Zhang ◽  
Runze Jing ◽  
Gaolin Wang ◽  
Lianghong Zhu ◽  
...  
2019 ◽  
Vol 140 ◽  
pp. 10006
Author(s):  
Aleksandr Lutonin ◽  
Andrey Shklyarskiy ◽  
Yaroslav Shklyarskiy

This paper represents control strategy of anisotropic permanent magnet synchronous motor (IPMSM) in the field-weakening region. Field weakening controller allows to increase maximum achievable speed with output torque reduction. Proposed control system consists of four general modes: MTPA (maximum torque per ampere), MC (maximum current), FW (field weakening), and MTPV (maximum torque per voltage) which must be chosen accordingly to motor speed, current and torque references. Operation point is found as an intersection of torque hyperbola and voltage ellipse curves in d-q motor’s current reference frame involving motor parameters’ limits. However, due to nonlinear dependence between torque and voltage equations, it is quite complicated to obtain both right control mode selection and reference output calculation. In order to solve this problem, a unified control algorithm adopted for wide speed and torque reference with online constraints calculation is proposed. Matlab/Simulink control model of PMSM motor and control system were designed in order to show developed strategy performance. Simulation results shows increasing of speed limit by more than 2.5 times related to nominal speed with high controller’s response. However, speed limit increasing leads to a decrease in motor’s output torque. Due to this fact, presented control strategy is not suitable for applications where nominal torque level is essential for all speed operation points.


2014 ◽  
Vol 496-500 ◽  
pp. 1356-1359
Author(s):  
Chuan Xue Song ◽  
Si Lun Peng ◽  
Shi Xin Song ◽  
Jian Hua Li ◽  
Feng Xiao

For the permanent magnet synchronous motor used in electric vehicle wheel, in order to obtain high torque at low speed, a lot of pole pairs are designed in the structure. So the electrical angle will rotate too fast, and the commutation delay will appear apparently at high speed. The commutation process of permanent magnet synchronous motor is analyzed and the timing control according to rotate speed is deduced. A motor simulation model is built to verify the control strategy. The result shows that the strategy can effectively improve high speed performance of motor.


2019 ◽  
Vol 68 (4) ◽  
pp. 3424-3435 ◽  
Author(s):  
Tao Deng ◽  
Zhenhua Su ◽  
Junying Li ◽  
Peng Tang ◽  
Xing Chen ◽  
...  

2012 ◽  
Vol 546-547 ◽  
pp. 313-319
Author(s):  
Liang Liang Mao ◽  
Xu Dong Wang ◽  
Mei Lan Zhou ◽  
Yan Ming Zhang ◽  
Jin Fa Liu

Interior permanent magnet synchronous motors can be applied to applications requiring wide-speed operation by means of flux-weakening control. While due to the fixed capacity of PWM inverter, the high speed operation range of interior permanent magnet synchronous motor (IPMSM) is mainly limited by the saturation of current regulator. In constant power region, in stead of the available voltage that controls the armature current vector, the current vector sometimes becomes uncontrollable in transient operations because of the current regulator saturation. In order to extend its operation range, the current vector control algorithm of IPM motor over the base speed operation is proposed in this paper which includes the decoupling current control and the voltage command compensation. Also this paper introduces a judgment method to monitor if the current regulator has gone into saturation or not. Finally on the basis of simulation results, the effectiveness of this control strategy is further confirmed by real drive tests.


Sign in / Sign up

Export Citation Format

Share Document