Design of PV Network Integrated to Traction Supply System of Single-Phase AC Railway System for improved harmonic mitigation

Author(s):  
Kulesh Kumar ◽  
Masafumi Miyatake
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2100 ◽  
Author(s):  
Rosario Miceli ◽  
Giuseppe Schettino ◽  
Fabio Viola

In this paper, a novel approach to low order harmonic mitigation in fundamental switching frequency modulation is proposed for high power photovoltaic (PV) applications, without trying to solve the cumbersome non-linear transcendental equations. The proposed method allows for mitigation of the first-five harmonics (third, fifth, seventh, ninth, and eleventh harmonics), to reduce the complexity of the required procedure and to allocate few computational resource in the Field Programmable Gate Array (FPGA) based control board. Therefore, the voltage waveform taken into account is different respect traditional voltage waveform. The same concept, known as “voltage cancelation”, used for single-phase cascaded H-bridge inverters, has been applied at a single-phase five-level cascaded H-bridge multilevel inverter (CHBMI). Through a very basic methodology, the polynomial equations that drive the control angles were detected for a single-phase five-level CHBMI. The acquired polynomial equations were implemented in a digital system to real-time operation. The paper presents the preliminary analysis in simulation environment and its experimental validation.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Fei Chang ◽  
Zhongping Yang ◽  
Fei Lin

Significant disadvantages in power quality especially the unbalance problem and neutral sections restrict the evolution of conventional traction power supply system. A new traction power supply system based on three-phase to single-phase converter is studied, which can transfer active power from three-phase grid to single-phase catenary. One catenary section could be utilized in the new traction power supply system instead of the multiple split sections in conventional system. Three-phase to single-phase converter is the core equipment of new traction power system. MMC (modular multilevel converter) structure of AC-DC-AC substation is proposed in this paper. To solve the problem of the capacitor voltage balancing in MMC, a parallel sorting algorithm based on field programmable gate array (FPGA) is studied. And the correctness and effectiveness of the algorithm are verified by experiments. In addition, it is inevitable that the AC grid voltage will be unbalanced caused by the fault in the new system. Therefore, this paper focuses on the analysis of the effect of the unbalanced grid voltage on the operating characteristics of the MMC system. Finally, the correctness of the theoretical analysis is verified by simulation.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qing Zhong ◽  
Junjie Feng ◽  
Gang Wang ◽  
Haifeng Li

With the development of distributed generations (DGs), single-phase voltage source converter (SPVSC) has been widely used, but it brings about the problem of harmonic pollution to power grid. Hence, it is significant to explore the mechanism of harmonic injection from SPVSC and propose effective control strategies to mitigate the harmonic pollution. In this paper, a harmonic analysis model of SPVSC based on dynamic phasor (DP) has been established. With the model, the harmonics interaction between the ac side and the dc side can be analyzed with the consideration of the control strategies, which reveals the generation mechanism of the harmonics in SPVSC. Based on the mechanism, a feedforward harmonic mitigation strategy has been presented. The principle of the strategy is to add low-order harmonic signal to the PWM modulation signals to reduce the harmonic current on the ac side. The harmonic mitigation strategy not only has clear physical meaning and fast calculation, but also is robust for the uncertainty of parameters. Finally, the simulation and experiment results demonstrate the correctness of the model and the effectiveness of the harmonic mitigation strategy.


2015 ◽  
Vol 740 ◽  
pp. 359-363
Author(s):  
Shi Long Chen ◽  
Lu Luo ◽  
Yan Wu Wang

The TCR single-phase to three-phase power converter has been widely used in electrified railway system as its simple control raw and high reliability. The research on main circuit parameters and its control law is necessary to design suitable TCR single phase to three phase power converter. This paper analyses the main circuit of TCR single phase to three phase power converter, and acquires the parameters configuration theory of each element in main circuit and control law of converter when the power factor varies from 0.7 to 0.9.


Sign in / Sign up

Export Citation Format

Share Document