Superhydrophobic Surface Based on Silicon Coating on Silicon-Based Electrospun Nano structures

Author(s):  
Cho-Liang Chung ◽  
Chun Wei Cheng ◽  
Cheng-Ying Tsai ◽  
Yu-Ching Chao ◽  
Wei-Hao Chen
2020 ◽  
Vol 501 ◽  
pp. 144165 ◽  
Author(s):  
Yanli Qi ◽  
Zhangbin Yang ◽  
Tingting Chen ◽  
Yulin Xi ◽  
Jun Zhang

2021 ◽  
Vol 12 (1) ◽  
pp. 451-459
Author(s):  
Xiwen Lu ◽  
Jinhang Liu ◽  
Ye Ding ◽  
Lijun Yang ◽  
Zhan Yang ◽  
...  

Abstract. With the rapid development of nanotechnology, the size of a device reaches sub-nanometer scale. The larger resistivity of interconnect leads to serious overheating of integrated circuits. Silicon-based electronic devices have also reached the physical limits of their development. The use of carbon nanotubes instead of traditional wires has become a new solution for connecting nano-structures. Nanocluster particles serving as brazing material play an important role in stabilizing the connection of carbon nanotubes, which places higher demands for nanoscale manipulation techniques. In this paper, the dynamic processes under different operating scenarios were simulated and analyzed, including probe propulsion nanoparticle operation, probe pickup nanoparticle operation and probe pickup nanocluster particle operation. Then, the SEM (Scanning Electron Microscope) was used for nanoparticle manipulation experiments. The smallest unit of carbon nanotube wire was obtained by three-dimensional (3D) construction of a carbon nanotube–silver nanocluster particle (CN-AgNP), which verified the feasibility of 3D manipulation of carbon nanotube wire construction. The experiments on the construction of carbon nanotube–nanocluster particle structures in three-dimensional operation were completed, and the smallest unit of carbon nanotube wire was constructed. This nano-fabrication technology will provide an efficient and mature technical means in the field of nano-interconnection.


2011 ◽  
Vol 11 (7) ◽  
pp. 1535-1540 ◽  
Author(s):  
Sara Darbari ◽  
Yaser Abdi ◽  
Aida Ebrahimi ◽  
Shamsoddin Mohajerzadeh

1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-101-Pr8-107
Author(s):  
F. J. Martí ◽  
A. Castro ◽  
J. Olivares ◽  
C. Gómez-Aleixandre ◽  
J. M. Albella
Keyword(s):  

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-861-Pr3-867 ◽  
Author(s):  
S. M. Zemskova ◽  
J. A. Haynes ◽  
K. M. Cooley

1996 ◽  
Vol 444 ◽  
Author(s):  
Hyeon-Seag Kim ◽  
D. L. Polla ◽  
S. A. Campbell

AbstractThe electrical reliability properties of PZT (54/46) thin films have been measured for the purpose of integrating this material with silicon-based microelectromechanical systems. Ferroelectric thin films of PZT were prepared by metal organic decomposition. The charge trapping and degradation properties of these thin films were studied through device characteristics such as hysteresis loop, leakage current, fatigue, dielectric constant, capacitancevoltage, and loss factor measurements. Several unique experimental results have been found. Different degradation processes were verified through fatigue (bipolar stress), low and high charge injection (unipolar stress), and high field stressing (unipolar stress).


1996 ◽  
Vol 444 ◽  
Author(s):  
H. Okumoto ◽  
M. Shimomura ◽  
N. Minami ◽  
Y. Tanabe

AbstractSilicon-based polymers with σconjugated electrons have specific properties; photoreactivity for microlithography and photoconductivity for hole transport materials. To explore the possibility of combining these two properties to develop photoresists with electronic transport capability, photoconductivity of polysilanes is investigated in connection with their photoinduced chemical modification. Increase in photocurrent is observed accompanying photoreaction of poly(dimethylsilane) vacuum deposited films. This increase is found to be greatly enhanced in oxygen atmosphere. Such changes of photocurrent can be explained by charge transfer to electron acceptors from Si dangling bonds postulated to be formed during photoreaction.


2005 ◽  
Vol 862 ◽  
Author(s):  
Scott J. Jones ◽  
Joachim Doehler ◽  
Tongyu Liu ◽  
David Tsu ◽  
Jeff Steele ◽  
...  

AbstractNew types of transparent conductive oxides with low indices of refraction have been developed for use in optical stacks for the amorphous silicon (a-Si) solar cell and other thin film applications. The alloys are ZnO based with Si and MgF added to reduce the index of the materials through the creation of SiO2 or MgF2, with n=1.3-1.4, or the addition of voids in the materials. Alloys with 12-14% Si or Mg have indices of refraction at λ=800nm between 1.6 and 1.7. These materials are presently being used in optical stacks to enhance light scattering by Al/multi-layer/ZnO back reflectors in a-Si based solar cells to increase light absorption in the semiconductor layers and increase open circuit currents and boost device efficiencies. In contrast to Ag/ZnO back reflectors which have long term stability issues due to electromigration of Ag, these Al based back reflectors should be stable and usable in manufactured PV products. In this manuscript, structural properties for the materials will be reported as well as the performance of solar cell devices made using these new types of materials.


Sign in / Sign up

Export Citation Format

Share Document