Dynamic Real-Time Stream Reservation with TAS and Shared Time Windows

Author(s):  
Alexej Grigorjew ◽  
Nicholas Gray ◽  
Tobias Hossfeld
Keyword(s):  
2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Zaki Mustapa

This paper discusses on attitude control of a quadcopter unmanned aerial vehicle (UAV) in real time application. Newton-Euler equation is used to derive the model of system and the model characteristic is analyzed. The paper describes the controller design method for the hovering control of UAV automatic vertical take-off system. In order to take-off the quadcopter and stable the altitude, PID controller has been designed. The scope of study is to develop an altitude controller of the vertical take-off as realistic as possible. The quadcopter flight system has nonlinear characteristics. A simulation is conducted to test and analyze the control performance of the quadcopter model. The simulation was conducted by using Mat-lab Simulink. On the other hand, for the real time application, the PCI-1711 data acquisition card is used as an interface for controller design which routes from Simulink to hardware. This study showed the controller designs are implemented and tuned to the real system using Real Time Windows Target approach by Mat-Lab Simulink.


1999 ◽  
Vol 105 (2) ◽  
pp. 1193-1193
Author(s):  
Joel D. Miller ◽  
Jonathan S. Abel ◽  
Elizabeth M. Wenzel

1998 ◽  
Vol 1617 (1) ◽  
pp. 171-178 ◽  
Author(s):  
How-Ming Shieh ◽  
Ming-Der May

The problem of the on-line version of the vehicle routing problem with time windows (VRPTW) differs from the traditional off-line problem in the dynamical arrival of requests and the execution of the partial tour during the run time. The study develops an on-line optimization-based heuristic that combined the concepts of the “on-line algorithm,” “anytime algorithm,” and local search heuristics to solve the on-line version of VRPTW. The solution heuristic is evaluated with modified Solomon’s problems. By comparing with these benchmark problems, the different results between on-line and off-line algorithms are indicated.


2020 ◽  
Author(s):  
Jean-Philippe Metaxian ◽  
Agus Budi Santoso ◽  
François Beauducel ◽  
Nabil Dahamna ◽  
Vadim Monteiller ◽  
...  

<p>Seismic antennas are often used on volcanoes to analyse emergent signals as LP events or tremor.  In fact, they can be used for any kind of seismicity whether the signal is impulsive or emergent. In this work we are using a seismic antenna as an instrument for monitoring the continuous seismic signal, with the objective of a real-time application.</p><p>A seismic antenna composed of 5 broadband stations equipped with Guralp CMG-6TD stations was installed in November 2013 close to the summit of Merapi, on the site called Pasar Bubar. Sensors have a flat response characteristic from 30 s to the Nyquist frequency (50 Hz). This network has an aperture of 280 m. The shortest distance between sensors is 100 m.</p><p> </p><p>In the perspective of a real-time application, the main analysis, which consists of estimating the slowness vector, requires a shorter computation time than the data acquisition time. We thus focused on a signal processing technique based on the calculation of time delays on the vertical component only and in a single frequency band. Given a set of time delays and associated errors calculated between each couple of sensors in the frequency domain, the corresponding slowness vectors can be recovered by inversion. Slowness vectors are estimated for successive time-windows in the frequency band 0.5-3 Hz. Temporal series of back-azimuth and apparent slowness are deduced with respect to time.</p><p>The analysis strategy for monitoring is then the following: A weight function expressed as a function of the derivatives of the time delays is calculated for successive moving time-windows. This function was designed in order to identify areas of stability of the back-azimuth values as function of time. A PDF of the back-azimuth and apparent slowness is then estimated for time series of 1 hour. This gives information on the dominant activity by time unit.</p><p>We will show the results obtained with the analysis of several months of continuous signal which are including different types of events generated by the on-going eruptive activity of Merapi: 1) volcano-tectonic events, 2) Multi-Phase (MP) events related with magma ascent in the conduit, 3) low-frequency events, 4) Rock-falls and 5) Pyroclastic density currents.</p>


2009 ◽  
Vol 194 (3) ◽  
pp. 711-727 ◽  
Author(s):  
Jing-Quan Li ◽  
Pitu B. Mirchandani ◽  
Denis Borenstein
Keyword(s):  

2018 ◽  
Vol 4 (48) ◽  
pp. 27-40 ◽  
Author(s):  
Antonio COMI ◽  
Berta BUTTARAZZI ◽  
Massimiliano SCHIRALDI ◽  
Rosy INNARELLA ◽  
Martina VARISCO ◽  
...  

The paper aims at introducing an advanced delivery tour planner to support operators in urban delivery operations through a combined approach which chooses delivery bays and delivery time windows while optimizing the delivery routes. After a literature review on tools for the management and the control of the delivery system implemented for optimizing the usage of on-street delivery bays, a prototypical tour delivery planner is described. The tool allows transport and logistics operators to book the delivery bays and to have real-time suggestions on the delivery tour to follow, through the minimization of the total delivery time. Currently, at development phase, the tool has been tested in a target zone, considering the road network and time/city delivering constraints and real-time data about vehicles location, traffic and delivery bay availability. The tool identifies the possible tours based on the delivery preferences, ranks the possible solutions according to the total route time based on information on the road network (i.e. travel time forecasts), performs a further optimization to reduce the total travel times and presents the user the best alternative along with the indications of which delivery bay to use in each delivery stop. The developed prototype is composed by two main parts: a web application that manages communication between the database and the road network simulation, and, an Android mobile App that supports transport and logistic operators in managing their delivering, pre trip and en route, showing and updating routing based on real-time information.


2021 ◽  
Author(s):  
Josiah Jacobsen-Grocott ◽  
Yi Mei ◽  
Gang Chen ◽  
Mengjie Zhang

Dynamic vehicle routing problem with time windows is an important combinatorial optimisation problem in many real-world applications. The most challenging part of the problem is to make real-time decisions (i.e. whether to accept the newly arrived service requests or not) during the execution of the routes. It is hardly applicable to use the optimisation methods such as mathematical programming and evolutionary algorithms that are competitive for static problems, since they are usually time-consuming, and cannot give real-time responses. In this paper, we consider solving this problem using heuristics. A heuristic gradually builds a solution by adding the requests to the end of the route one by one. This way, it can take advantage of the latest information when making the next decision, and give immediate response. In this paper, we propose a meta-algorithm to generate a solution given any heuristic. The meta-algorithm maintains a set of routes throughout the scheduling horizon. Whenever a new request arrives, it tries to re-generate new routes to include the new request by the heuristic. It accepts the new request if successful, and reject otherwise. Then we manually designed several heuristics, and proposed a genetic programming-based hyper-heuristic to automatically evolve heuristics. The results showed that the heuristics evolved by genetic programming significantly outperformed the manually designed heuristics. © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2019 ◽  
Vol 39 (5) ◽  
pp. 753-768 ◽  
Author(s):  
Ruochen Tai ◽  
Jingchuan Wang ◽  
Weidong Chen

Purpose In the running of multiple automated guided vehicles (AGVs) in warehouses, delay problems in motions happen unavoidably as there might exist some disabled components of robots, the instability of networks and the interference of people walking. Under this case, robots would not follow the designed paths and the coupled relationship between temporal and space domain for paths is broken. And there is no doubt that other robots are disturbed by the ones where delays happen. Finally, this brings about chaos or even breakdown of the whole system. Therefore, taking the delay disturbance into consideration in the path planning of multiple robots is an issue worthy of attention and research. Design/methodology/approach This paper proposes a prioritized path planning algorithm based on time windows to solve the delay problems of multiple AGVs. The architecture is a unity consisting of three components which are focused on scheduling AGVs under normal operations, delays of AGVs, and recovery of AGVs. In the components of scheduling AGVs under normal operations and recovery, this paper adopts a dynamic routing method based on time windows to ensure the coordination of multiple AGVs and efficient completion of tasks. In the component for scheduling AGVs under delays, a dynamical prioritized local path planning algorithm based on time windows is designed to solve delay problems. The introduced planning principle of time windows would enable the algorithm to plan new solutions of trajectories for multiple AGVs, which could lower the makespan. At the same time, the real-time performance is acceptable based on the planning principle which stipulates the parameters of local time windows to ensure that the computation of the designed algorithm would not be too large. Findings The simulation results demonstrate that the proposed algorithm is more efficient than the state-of-the-art method based on homotopy classes, which aims at solving the delay problems. What is more, it is validated that the proposed algorithm can achieve the acceptable real-time performance for the scheduling in warehousing applications. Originality/value By introducing the planning principle and generating delay space and local adjustable paths, the proposed algorithm in this paper can not only solve the delay problems in real time, but also lower the makespan compared with the previous method. The designed algorithm guarantees the scheduling of multiple AGVs with delay disturbance and enhances the robustness of the scheduling algorithm in multi-AGV system.


Sign in / Sign up

Export Citation Format

Share Document