Output Power Capability Comparisons of Class-E Power Amplifiers with Harmonic Resonance

Author(s):  
Hiroo Sekiya ◽  
Xiuqin Wei ◽  
Yuchong Sun
2010 ◽  
Vol 20 (4) ◽  
pp. 232-234 ◽  
Author(s):  
Daniel Sira ◽  
Pia Thomsen ◽  
Torben Larsen

2020 ◽  
Vol 96 (3s) ◽  
pp. 321-324
Author(s):  
Е.В. Ерофеев ◽  
Д.А. Шишкин ◽  
В.В. Курикалов ◽  
А.В. Когай ◽  
И.В. Федин

В данной работе представлены результаты разработки СВЧ монолитной интегральной схемы шестиразрядного фазовращателя и усилителя мощности диапазона частот 26-30 ГГц. СКО ошибки по фазе и амплитуде фазовращателя составили 1,2 град. и 0,13 дБ соответственно. Максимальная выходная мощность и КПД по добавленной мощности усилителя в точке сжатия Ку на 1 дБ составили 30 дБм и 20 % соответственно. This paper describes the design, layout, and performance of 6-bit phase shifter and power amplifier monolithic microwave integrated circuit (MMIC), 26-30 GHz band. Phase shifter MMIC has RMS phase error of 1.2 deg. And RMD amplitude error is 0.13 dB. MMIC power amplifier has output power capability of 30 dBm at 1 dB gain compression (P-1dB) and PAE of 20 %.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1705
Author(s):  
Ingrid Casallas ◽  
Robert Urbina ◽  
Carlos-Ivan Paez-Rueda ◽  
Gabriel Perilla ◽  
Manuel Pérez ◽  
...  

This paper explores the design of a Class-E amplifier with finite DC-feed inductance using three tuning methods. Furthermore, this work quantifies the impacts of the tuning process (referred to in this paper as the tuning effect) on the main figures of merit (FoMs) of this amplifier. The tuning goals were to guarantee two conditions: zero voltage and zero voltage derivative switching (i.e., soft-switching tuning). To the best of the authors’ knowledge, systematic tuning methods have not been analyzed before for this amplifier topology. Two of them are based on the iterative component tuning process, and they have been explored previously in the design of the conventional class-E amplifier with an RF choke inductance. The last tuning method explores the simultaneous adjustment of the control signal period and one amplifier capacitor. The analyzed tuning methods were validated by extensive simulations of case studies, which were designed following the power specifications of the Qi standard. In 100% and 96% of the case studies, zero voltage switching (ZVS) and zero-derivative voltage switching (ZDS) were achieved, respectively. Furthermore, we identified an unexpected behavior in the tuning process (referred to in this paper as the turning point), which consisted of a change of the expected trend of the soft-switching (i.e., ZVS and ZDS) point, and it occurred in 21% of the case studies. When this behavior occurred and converged to at least ZVS, the tuning process required more iterations and a large number of tuning variables. Additionally, after the tuning process, the total harmonic distortion and output power capacity were improved (i.e., in 78% and 61% of the case studies, respectively), whereas the output power, drain and added power efficiencies deteriorated (i.e., in 83%, 61% and 65% of the case studies, respectively) in the overall case studies. However, we could not identify an improvement in the overall FoMs related to the soft-switching tuning. Furthermore, the tuning impact was significant and produced some improvements and some deleterious effects for the FoMs in each case study, without a clear trend by FoMs or by tuning method. Therefore, the amplifier designer may choose the more favorable tuning method and the related FoM trade-offs for the required design specifications.


Sign in / Sign up

Export Citation Format

Share Document