Output power capability of class-E amplifiers with nonlinear shunt capacitance

Author(s):  
P.M. Gaudo ◽  
C. Bernal ◽  
A. Mediano
2020 ◽  
Vol 96 (3s) ◽  
pp. 321-324
Author(s):  
Е.В. Ерофеев ◽  
Д.А. Шишкин ◽  
В.В. Курикалов ◽  
А.В. Когай ◽  
И.В. Федин

В данной работе представлены результаты разработки СВЧ монолитной интегральной схемы шестиразрядного фазовращателя и усилителя мощности диапазона частот 26-30 ГГц. СКО ошибки по фазе и амплитуде фазовращателя составили 1,2 град. и 0,13 дБ соответственно. Максимальная выходная мощность и КПД по добавленной мощности усилителя в точке сжатия Ку на 1 дБ составили 30 дБм и 20 % соответственно. This paper describes the design, layout, and performance of 6-bit phase shifter and power amplifier monolithic microwave integrated circuit (MMIC), 26-30 GHz band. Phase shifter MMIC has RMS phase error of 1.2 deg. And RMD amplitude error is 0.13 dB. MMIC power amplifier has output power capability of 30 dBm at 1 dB gain compression (P-1dB) and PAE of 20 %.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1705
Author(s):  
Ingrid Casallas ◽  
Robert Urbina ◽  
Carlos-Ivan Paez-Rueda ◽  
Gabriel Perilla ◽  
Manuel Pérez ◽  
...  

This paper explores the design of a Class-E amplifier with finite DC-feed inductance using three tuning methods. Furthermore, this work quantifies the impacts of the tuning process (referred to in this paper as the tuning effect) on the main figures of merit (FoMs) of this amplifier. The tuning goals were to guarantee two conditions: zero voltage and zero voltage derivative switching (i.e., soft-switching tuning). To the best of the authors’ knowledge, systematic tuning methods have not been analyzed before for this amplifier topology. Two of them are based on the iterative component tuning process, and they have been explored previously in the design of the conventional class-E amplifier with an RF choke inductance. The last tuning method explores the simultaneous adjustment of the control signal period and one amplifier capacitor. The analyzed tuning methods were validated by extensive simulations of case studies, which were designed following the power specifications of the Qi standard. In 100% and 96% of the case studies, zero voltage switching (ZVS) and zero-derivative voltage switching (ZDS) were achieved, respectively. Furthermore, we identified an unexpected behavior in the tuning process (referred to in this paper as the turning point), which consisted of a change of the expected trend of the soft-switching (i.e., ZVS and ZDS) point, and it occurred in 21% of the case studies. When this behavior occurred and converged to at least ZVS, the tuning process required more iterations and a large number of tuning variables. Additionally, after the tuning process, the total harmonic distortion and output power capacity were improved (i.e., in 78% and 61% of the case studies, respectively), whereas the output power, drain and added power efficiencies deteriorated (i.e., in 83%, 61% and 65% of the case studies, respectively) in the overall case studies. However, we could not identify an improvement in the overall FoMs related to the soft-switching tuning. Furthermore, the tuning impact was significant and produced some improvements and some deleterious effects for the FoMs in each case study, without a clear trend by FoMs or by tuning method. Therefore, the amplifier designer may choose the more favorable tuning method and the related FoM trade-offs for the required design specifications.


2019 ◽  
Vol 4 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Noha Aboulfotoh ◽  
Jens Twiefel

Abstract Many researchers introduced an array of generators for broadband energy harvesting. The array has been studied in comparison to a single element from this array, but never compared to a single reference harvester with same volume as the whole array. This paper presents a theoretical study of evaluating the performance of the array harvester in comparison to the reference harvester. Power from the reference harvester as well as from the array is analytically calculated. The array is compared to the reference harvester when loaded by their optimal resistances which provide maximum power capability. The comparison is divided into two sections: firstly when the elements of the array are tuned to resonate at matching frequencies and secondly when they are tuned to non-matching resonance frequencies. The comparisons lead to two significant limits of the working bandwidth of the array: the lower and the upper limit. Between the two limits, the power produced from the array is less than the reference harvester, but with a small additional bandwidth. Below the lower limit, the array has no advantage over the reference harvester. Above the upper limit, output power of the array is inconsistent. Hence, design guidelines for the array are provided.


2014 ◽  
Vol 61 (4) ◽  
pp. 1799-1810 ◽  
Author(s):  
Tomoharu Nagashima ◽  
Xiuqin Wei ◽  
Tadashi Suetsugu ◽  
Marian K. Kazimierczuk ◽  
Hiroo Sekiya

2021 ◽  
Vol 19 ◽  
pp. 28-37
Author(s):  
Muhammad Noaman Zahid ◽  
Jianliang Jiang ◽  
Heng Lu ◽  
Hengli Zhang

In Radio Frequency (RF) communication, a Power Amplifier (PA) is used to amplify the signal at the required power level with less utilization of Direct Current (DC) power. The main characteristic of class-E PA is sturdy nonlinearity due to the switching mode action. In this study, a modified design of class-E PA with balanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and high output power for Electronic Article Surveillance (EAS) Radio Frequency Identification (RFID) application is presented. MOSFETs are adjusted to have high output performance of about 80% for RFID-based EAS system. A matching network is also proposed for accurate matching because there are differences in the behavior between RF waves and low frequency waves. The design of a matching network is a tradeoff among the complexity, adjustability, implementation, and bandwidth for the required output power and frequency. The implemented PA is capable of providing 44.8 dBm output power with Power-Added Efficiency (PAE) of 78.5% at 7.7 MHz to 8.7 MHz.


Author(s):  
Mu-Chun Wang ◽  
Zhen-Ying Hsieh ◽  
Chieu-Ying Hsu ◽  
Shuang-Yuan Chen ◽  
Heng-Sheng Huang

In this paper, we present a single-stage class-E power amplifier with multiple-gated shape as well as 0.18μm complementary metal-oxide-semiconductor (CMOS) process for 2.4GHz Industry-Science-Medicine (ISM) band. This power amplifier is able to be easily integrated into the system-on-chip (SoC) circuit. For the competition of lower cost and high integration in marketing concern, CMOS technology is fundamentally better than GaAs technology. We adopt the Advanced Design System software in circuit simulation coming from Agilent Company through the Chip Implementation Center (CIC) channel plus TSMC 0.18 μm device models. The simulation results with temperature effect, show the good performance such as an output power achievement of +22dBm under a 1.8V supply voltage; the power-added efficiency (PAE) is over 30%; the output impedance (S22) and the input impedance (S11) are fully lower than −15dB; the power gain (S21) is +11dB; the inverse isolation (S12) is below −26dB. This amplifier reaches its 1-dB compression point at an output level of 16.5dBm related to the input power 6.5dBm position. The output power with temperature variation from 0°C to 125°C depicts an acceptable spec. range, too.


Sign in / Sign up

Export Citation Format

Share Document