scholarly journals Base Station Antenna Systems for mm-Waves

Author(s):  
Ulf Johannsen ◽  
Thomas A. H. Bressner ◽  
Amr Elsakka ◽  
A. Bart Smolders ◽  
Martin Johansson

Base Station is the primary unit of any mobile communication system. An antenna is the most important part of the Base Station as it is responsible for exchange of all the electrical signals and electromagnetic waves radiations. From the last two decades there is huge advancement in the mobile communications and so as in the antennas for the base stations. This advancement gives rise to new designs of antennas with different specifications for different applications. In this paper, we discussed different geometries, designed earlier for the base station applications. The structures and respective results of antennas are discussed in the paper.


Author(s):  
Alexander A. Maltsev ◽  
Valentin M. Seleznev ◽  
Alexander S. Rulkov ◽  
Olesya V. Bolkhovskaya

Introduction. Currently, one of the most promising approaches of the 5th generation mobile wireless systems development is the deployment of heterogeneous networks based on existing LTE cellular systems with large and small cells. The main elements of such networks can be small low cost relay stations equipped with highly directional steerable antenna systems to connect small cells with LTE base station serving macrocell. Objective. Existing solutions are either too expensive or not allowing flexible rearrangement of current information transmission lines. The objective of this work is to develop antenna equipment for low cost relay stations based on simple steerable antenna systems of millimetre wavelength (57-64 GHz), which allow beamsteering in both azimuth and elevation planes. Methods and materials. The developed steerable bifocal lens antenna system is a lens of a special shape made of a high molecular weight polyethylene and integrated with a phased array antenna. A key feature of the designed antenna system is a wide-angle beamsteering in the azimuth plane and ability to adjust the beam in the elevation plane. The calculation of the lens profiles was carried out by means of an approximation of geometrical optics in Matlab, and the main technical characteristics of the lens antenna system were obtained by direct electromagnetic modelling in CST Microwave Studio. Results. The prototype of the steerable bifocal lens-array antenna system is developed and its characteristics are studied. The following technical characteristics are achieved in the 57–64 GHz range: beamsteering in the elevation plane is ±3º, beamsteering in the azimuth plane is ±40º, and antenna gain is from 20 to 27.5 dBi for all angles. Conclusion. It was shown that the developed antenna system can be successfully used as receiving and transmission antenna equipment of small relay stations that transmit information in the frequency range of 57-64 GHz over a distance of 100-300 m.


Author(s):  
D. O. Makoveenko ◽  
S. V. Siden ◽  
V. V. Pyliavskyi

Context. The aim of the article is to analyze the throughput of the LTE-A mobile network on the uplink using an adaptive linear equidistant antenna array. Objective. Suggestions have been made for the possibility of using adaptive antenna arrays to increase bandwidth in LTE-A mobile networks and analyze the benefits of its use compared to the standard type of base station antenna Method. To achieve this result, a computer model of noise analysis of the mobile network in the form of a flat regular hexagonal antenna array consisting of 7 three-sector cells was developed. To estimate the benefit from the use of adaptive antenna arrays, two options were analyzed: when using a standard antenna array of the LTE-A network, and an adaptive linear equidistant antenna array. During the simulation, 100 random placements of subscribers of useful and interference signals were performed and the minimum, maximum and average gain from the use of adaptive antenna arrays was calculated. The average value of the gain for the adaptive antenna array in the direction of the subscriber station, which generates a useful signal of 5.69 dB more than the standard antenna array of the LTE-A network. At the same time, there is a significant reduction in the gain of the adaptive antenna in the direction of the interference subscriber stations, namely, for those with the highest interference level, the gain is 32.84 dB and 28.33 dB, respectively. To clearly show the gain in the qualitative characteristics of the network, a bandwidth analysis was performed for different types of antennas. The bandwidth distribution (transport block size) for 50 resource blocks using an adaptive equidistant linear antenna array compared to a standard antenna array is presented. Results. It is shown that due to the use of adaptive antenna systems, the average bandwidth increases from 11 Mbit/s to 35 Mbit / s for all types of distribution considered channels. Conclusions. The article proposes the use of adaptive antenna arrays to increase the bandwidth of the LTE-A network. The simulation of bandwidth for 50 resource blocks showed that in the presence of internal system interference when using standard antennas of base stations, the average bandwidth is from 11.2 Mbps to 12.3 Mbps. At the same time, due to the use of adaptive antenna systems, the average bandwidth increases from 11 Mbit/s to 35 Mbit/s for all types of multipath channels considered.


1993 ◽  
Vol 11 (7) ◽  
pp. 1046-1057 ◽  
Author(s):  
P.C.F. Eggers ◽  
J. Toftgard ◽  
A.M. Oprea
Keyword(s):  

Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Fabbryccio A. C. M. Cardoso ◽  
Joao Paulo Miranda ◽  
Ingrid Moerman ◽  
Claudio F. Dias ◽  
...  

In this paper, we identify issues and possible solutions in the key area of large-scale antenna systems, also know as Massive Multiple Input Multiple Output (MIMO) systems. Additionally, we propose the use of Massive MIMO technology as a means to tackle the uplink mixed-service communication problem. Under the assumption of an available physical narrowband shared channel (PNSCH), the capacity of the MTC network and, in turn, that of the whole system, can be increased by grouping Machine-Type Communication (MTC) devices into clusters and letting each cluster share the same time-frequency physical resource blocks. We study the feasibility of applying sub-optimal linear detection to the problem of detecting a large number of MTC devices sharing the same time-frequency resources at the uplink of a base station (BS) equipped with a large number of antennas, M. In our study, we derive the achievable lower-bound rates for the studied sub-optimal linear detectors and show that the transmitted power of each MTC device can be reduced as M increases, which is a very important result for powerconstrained MTC devices running on batteries. Our simulation results suggest that, as M is made progressively larger, the performance of sub-optimal linear detection methods approach the matched filter bound, also known as perfect interference-cancellation bound.


Sign in / Sign up

Export Citation Format

Share Document