scholarly journals GEODYNAMICS

GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 5-15
Author(s):  
Alexander. N. Marchenko ◽  
◽  
Serhii Perii ◽  
Ivan Pokotylo ◽  
Zoriana Tartachynska ◽  
...  

The basic goal of this study (as the first step) is to collect the appropriate set of the fundamental astronomic-geodetics parameters for their further use to obtain the components of the density distributions for the terrestrial and outer planets of the Solar system (in the time interval of more than 10 years). The initial data were adopted from several steps of the general way of the exploration of the Solar system by iterations through different spacecraft. The mechanical and geometrical parameters of the planets allow finding the solution of the inverse gravitational problem (as the second stage) in the case of the continued Gaussian density distribution for the Moon, terrestrial planets (Mercury, Venus, Earth, Mars) and outer planets (Jupiter, Saturn, Uranus, Neptune). This law of Gaussian density distribution or normal density was chosen as a partial solution of the Adams-Williamson equation and the best approximation of the piecewise radial profile of the Earth, including the PREM model based on independent seismic velocities. Such conclusion already obtained for the Earth’s was used as hypothetic in view of the approximation problem for other planets of the Solar system where we believing to get the density from the inverse gravitational problem in the case of the Gaussian density distribution for other planets because seismic information, in that case, is almost absent. Therefore, if we can find a stable solution for the inverse gravitational problem and corresponding continue Gaussian density distribution approximated with good quality of planet’s density distribution we come in this way to a stable determination of the gravitational potential energy of the terrestrial and giant planets. Moreover to the planet’s normal low, the gravitational potential energy, Dirichlet’s integral, and other planets’ parameters were derived. It should be noted that this study is considered time-independent to avoid possible time changes in the gravitational fields of the planets.

2021 ◽  
Vol 57 (1) ◽  
pp. 015012
Author(s):  
Unofre B Pili ◽  
Renante R Violanda

Abstract The video of a free-falling object was analysed in Tracker in order to extract the position and time data. On the basis of these data, the velocity, gravitational potential energy, kinetic energy, and the work done by gravity were obtained. These led to a rather simultaneous validation of the conservation law of energy and the work–energy theorem. The superimposed plots of the kinetic energy, gravitational potential energy, and the total energy as respective functions of time and position demonstrate energy conservation quite well. The same results were observed from the plots of the potential energy against the kinetic energy. On the other hand, the work–energy theorem has emerged from the plot of the total work-done against the change in kinetic energy. Because of the accessibility of the setup, the current work is seen as suitable for a home-based activity, during these times of the pandemic in particular in which online learning has remained to be the format in some countries. With the guidance of a teacher, online or face-to-face, students in their junior or senior high school—as well as for those who are enrolled in basic physics in college—will be able to benefit from this work.


1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


2012 ◽  
Vol 8 (S292) ◽  
pp. 47-47
Author(s):  
Huixian Li ◽  
Di Li ◽  
Rendong Nan

AbstractWe collected 27 outflows from the literature and found 8 new ones in the FCRAO CO maps of the Taurus molecular cloud. The total kinetic energy of the 35 outflows is found to be about 3% of the gravitational potential energy from the whole cloud. The feedback effect due to the outflows is minor in Taurus.


Author(s):  
Charles D. Bailyn

This chapter explores the ways that accretion onto a black hole produces energy and radiation. As material falls into a gravitational potential well, energy is transformed from gravitational potential energy into other forms of energy, so that total energy is conserved. Observing such accretion energy is one of the primary ways that astrophysicists pinpoint the locations of potential black holes. The spectrum and intensity of this radiation is governed by the geometry of the gas flow, the mass infall rate, and the mass of the accretor. The simplest flow geometry is that of a stationary object accreting mass equally from all directions. Such spherically symmetric accretion is referred to as Bondi-Hoyle accretion. However, accretion flows onto black holes are not thought to be spherically symmetric—the infall is much more frequently in the form of a flattened disk.


2021 ◽  
Author(s):  
Yingjie Yao

<p>The intermittent surge is the basic manifestation of viscous debris flow, which emerges universally over the world, especially exemplified by those in Jiangjia Gully (JJG), a valley famous for its high frequency and variety of debris flow surges. It has been found that the surges originate from various sources in the watershed, thus identifying the source areas plays a fundamental role in studying the mechanism and process of surge developing. Advancement of GIS provides an apparent convenience in geospatial analysis of the watershed, which is used as a dominate tool in this paper.</p><p>In this study the JJG is divided into 97 tributaries (sub-watershed) and the hypsometric analysis is performed for each, from which derive the height of inflection points and the gravitational potential energy, coupled with the fitted parameters of specific power function. Then the morphology parameters, including slope, roundness, vegetation and soil, are revealed in tributaries. Besides, spatial autocorrelation among tributaries is quantified both globally and locally through Moran’s I and Getis-Ord G<sub>i</sub>*, so that the HI spatial distributions are quantified and visualized. In particular, hot spots are conspicuously visible and highlight the geologic meaning of the HI when exploratory spatial data analysis is applied to the data distributions through local indices of spatial autocorrelation.</p><p>The results show that H-curves approximately present as S-shaped, and the integral values (HI) range from 0.18 to 0.69 and show positive relationship with both gravitational potential energy and the height of the inflection points. By the HI value, the tributaries are identified as in 5 phases of evolution. The younger tributaries (HI>0.49) make up the majority, which are expected to be the main possible sources for debris flows. Additionally, the slope distribution of tributaries all conform to the extreme distribution while the curves for the upstream, where the HI of tributaries generally manifest higher coupled with larger roundness, tends to skew to the right.</p><p>Finally the correlation between possible sources are explored through geospatial analysis. The spatial association in JJG provides an explanation of the debris flow source areas. Global spatial autocorrelation manifests significantly clustered (Moran’s I shows 0.449, passing the significance test) while tributaries with high HI value concentrate mainly in the Menqian Valley. Moreover, the drainage form of Menqian Valley represents a large possibility of debris flow source area with the respect of that being in Duozhao Valley.</p><p><strong>Keywords: </strong>debris flow source area; hypsometric analysis; topographical characteristics; spatial autocorrelation; evolutionary phases</p>


Sign in / Sign up

Export Citation Format

Share Document