Tests on Mechanical Properties and Anti-Penetration Performance of Steel-Fiber Reactive Powder Concrete

2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.

2011 ◽  
Vol 368-373 ◽  
pp. 436-440
Author(s):  
Chun Ming Song ◽  
Ming Yang Wang ◽  
De Rong Wang

In order to get mechanical properties and anti-explosion capability parameters, some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. The model tests are also carried out on RPC shelter plate under contact explosion, the most important parameter to express anti-explosion capability,i.e. compression coefficient of the material, is obtained by above experiments and theory study, the results of tests show RPC with steel fiber has very high strength and anti-explosion capability, its compressive strength and anti-explosion capability are about six and three times higher than those of C30 concrete respectively.


2018 ◽  
Vol 7 (4) ◽  
pp. 2753
Author(s):  
Ibtihal Fadhil ◽  
Ayad K. Kadhem ◽  
Nisreen Salih

Reactive powder concrete is a new concrete that has been used in recent years because of many advantages. The use of reactive powder concrete in structural elements such as beams provides higher compressive strength, higher modulus of elasticity, durable concrete and increasing the concrete ductility, so that the concrete has high resistance against tensile stress. The experimental tests of the reinforced concrete beams under the effects of impact loadings are investigated in this paper. The parameters being adopted in present paper are steel fiber of (1, 1.5 and 2%) by volume, dropped mass and height of drop. The reinforced concrete specimens were tested under impact load by one strike only. The test results indicate that the impact force increased when the compressive strength of concrete increased that when the steel fiber ratio becomes more and the deflection has become less.  


2011 ◽  
Vol 261-263 ◽  
pp. 192-196 ◽  
Author(s):  
Yan Zhong Ju ◽  
De Hong Wang ◽  
Fei Jiang

Based on experiments of uniaxial compression and flexural experiments, the basic mechanical properties (compressive strength and flexural strength) of reactive powder concrete (RPC) were investigated, the effect of the steel fiber content on mechanical properties of RPC was studied in this work. The resu1ts indicate that the axial compressive strength of RPC had no obvious change with the change of steel fiber content. When the steel fiber content varied from 1.0% to 2.0%, the flexural strength of RPC had no obvious change.When the steel fiber content varied from 2.0% to 5.0%, the flexural strength of RPC increased dramaticlly with the increase of steel fibers content. According to experiment curves, an equation for the compressive stress-strain curve of RPC was deduced with different stee1 fiber content.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Gai-Fei Peng ◽  
Yi-Rong Kang ◽  
Yan-Zhu Huang ◽  
Xiao-Ping Liu ◽  
Qiang Chen

An experimental investigation was conducted on fire resistance of reactive powder concrete (RPC), mainly on explosive spalling occurrence and residual mechanical properties exposed to high temperature. The residual mechanical properties measured include compressive strength, tensile splitting strength, and fracture energy. RPC was prepared using cement, sand, silica fume, steel fiber, and polypropylene fiber. After subjected to high temperatures from 200 to 600°C, the residual mechanical properties were determined. RPC spalled considerably under high temperature. After exposure to high temperatures from 200 to 400°C, mechanical properties were enhanced more or less, which can be attributed to further hydration of cementitious materials activated by elevated temperature. Compressive strength started to decrease after exposure to 400°C, but tensile splitting strength and fracture energy started to decrease after exposure to 200°C. Incorporating hybrid fiber (polypropylene fiber and steel fiber) is a promising way to enhance resistance of RPC to explosive spalling, which should be a main objective for improving its fire resistance.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mingyang Chen ◽  
Wenzhong Zheng

To optimize the main components of reactive powder concrete (RPC) for various curing methods, based on the fluidity and compressive strength, an inclusive experimental research is conducted on 58 different mixture ratios. The results indicate that owing to the increase of the cement strength, the RPC fluidity decreases and the cement strength is not proportional to the compressive strength. The addition of the fly ash and the nano-microbead is an effective way to improve the fluidity, and it is required at the low W/B ratio. However, the influence of the SF grade on the strength and fluidity is almost negligible. By considering the fluidity, strength, and economy of RPC as crucial design factors, SF90 is suggested. The contribution of the steel fiber to the compressive strength cannot be ignored. The upper envelope value of the steel fibers is required for the structure to resist appropriately against the fire. According to the test results, the mixture ratio formula is proposed through considering the characters of different compositions and curing methods. The strength coefficient k1 is introduced to verify the influence of the steel fiber content, and the parameters fb, αa, and αb in the formula are reevaluated. A reasonably good agreement between the calculated strength and those obtained from the tests is reported, except for the case of W/B = 0.16 with P.O.52.5 cement. The basic steps for preparations of different RPC strengths are given, which provide a valuable reference to choose appropriate raw materials and mixture ratio design for different strength values.


2019 ◽  
Vol 9 (10) ◽  
pp. 2031 ◽  
Author(s):  
Hanbing Liu ◽  
Shiqi Liu ◽  
Shurong Wang ◽  
Xin Gao ◽  
Yafeng Gong

Basalt fibers are widely used in the modification of concrete materials due to its excellent mechanical properties and corrosion resistance. In this study, the basalt fibers were used to modify reactive powder concrete (RPC). The effect of four mix proportion parameters on the working and mechanical properties of basalt fiber reactive powder concrete (BFRPC) was evaluated by the response surface methodology (RSM). The fluidity, flexural and compressive strength were tested and evaluated. A statistically experimental model indicated that D (the silica fume to cement ratio) was the key of interactions between factors, affecting other factors and controlling properties of BFRPC. The increase in basalt fiber content had a remarkable effect on increasing the flexural and compressive strength when D = 0.2. The addition of basalt fiber obviously improved the mechanical properties of RPC. While when D = 0.4, the decrease of fiber content and the increase of quartz sand content could increase the compressive strength.


2010 ◽  
Vol 150-151 ◽  
pp. 779-782
Author(s):  
Qing Xin Zhao ◽  
Zhao Yang Liu ◽  
Jin Rui Zhang ◽  
Ran Ran Zhao

By means of the three-point bending impact equipment, with the measurement of ultrasonic velocity, the impact behavior and damage evolution of reactive powder concrete (RPC) with 0, 1%, 2% and 3% volume fraction of steel fiber were tested. The results showed that steel fiber significantly improved the compressive strength, flexural strength, flexural toughness and impact toughness of RPC matrix. The compressive strength, flexural strength, flexural toughness of RPC with 3% steel fiber increased by 40.1%, 102.1%, and 37.4 times than that of plain concrete, respectively, and simultaneously, the impact toughness of RPC with 3% steel fiber was 93.2 times higher than that with 1% steel fiber. RPC with 2% and 3% steel fiber dosage both had relatively high compressive strength, flexural strength and flexural toughness; however, compared with the sample with 2% steel fiber dosage, the impact toughness of RPC with 3% steel fiber dosage increased by more than 10 times. Therefore, taking economy and applicability into consideration, if we mainly emphasis on the compressive strength, flexural strength and flexural toughness, RPC with 2% steel fiber is optimal. While if impact toughness is critical, RPC with 3% steel fiber would be the best choice.


2014 ◽  
Vol 496-500 ◽  
pp. 2402-2406
Author(s):  
Kui He ◽  
Hui Yang ◽  
Fang Fang Jia ◽  
Er Po Wang ◽  
Zhen Bao Lu ◽  
...  

Workability, strength and fracture mechanics of polypropylene macro-fiber reinforced Reactive powder concrete (RPC) were studied in this work. The results showed that the incorporation of macro-fiber could influence the workability of RPC, the slump of RPC decreased with the increasing of macro-fiber content; compressive strength decreased while splitting strength increased with the increasing of macro-fiber, meanwhile the flexural strength invariant. Macro-fiber could strongly enhance the flexural toughness of RPC and changed the failure mode from brittle to ductile; fracture energy tends to increase linearly with the increasing of macro-fiber.


Sign in / Sign up

Export Citation Format

Share Document