RBF Neural Network (RBFNN) using Density Based Clustering for Liver Disorder Dataset

Author(s):  
Sunila Godara ◽  
Rishipal Singh ◽  
Sanjeev Kumar

Clustering is an unsupervised classification that is the partitioning of a data set in a set of meaningful subsets. Each object in dataset shares some common property- often proximity according to some defined distance measure. In this paper we will extend our previous work [15]. Simple K-means and Proposed makeDensityBased    Clustering (MDBC) are embedded in RBF Neural Network (RBFNN). We evaluated the performance of  RBFNN using K-Means and Proposed makeDensityBased Clustering on Liver Disorder Dataset. Proposed algorithm is superior to the existing makeDensityBased Clustering algorithm [15], but it is not capable of performing well when it is embedded with RBFNN.

2012 ◽  
Vol 157-158 ◽  
pp. 1595-1600
Author(s):  
Ji Lin Chen ◽  
Jin Qian ◽  
Zhong Zhi Tong ◽  
Yuan Long Hou

The paper presents an approach to model the electro-hydraulic system of a certain explosive mine sweeping device using the Radial Basis Function (RBF) neural network. In order to obtain accurate and simple RBF neural network, a revised clustering method is used to train the hidden node centers of the neural network, in which the subtractive clustering(SC) algorithm was used to determine the initial centers and the fuzzy C – Means(FCM) clustering algorithm to further determined the centers data set. The spread factors and the weights of the neural network are calculated by the modified recursive least squares (MRLS) algorithm for relieving computational burden. The proposed algorithm is verified by its application to the modeling of an electro-hydraulic system, simulation and experiment results clearly indicate the obtained RBF network can model the electro-hydraulic system satisfactorily and comparison results also show that the proposed algorithm performs better than the other methods.


2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


Author(s):  
Xiaoyu Qin ◽  
Kai Ming Ting ◽  
Ye Zhu ◽  
Vincent CS Lee

A recent proposal of data dependent similarity called Isolation Kernel/Similarity has enabled SVM to produce better classification accuracy. We identify shortcomings of using a tree method to implement Isolation Similarity; and propose a nearest neighbour method instead. We formally prove the characteristic of Isolation Similarity with the use of the proposed method. The impact of Isolation Similarity on densitybased clustering is studied here. We show for the first time that the clustering performance of the classic density-based clustering algorithm DBSCAN can be significantly uplifted to surpass that of the recent density-peak clustering algorithm DP. This is achieved by simply replacing the distance measure with the proposed nearest-neighbour-induced Isolation Similarity in DBSCAN, leaving the rest of the procedure unchanged. A new type of clusters called mass-connected clusters is formally defined. We show that DBSCAN, which detects density-connected clusters, becomes one which detects mass-connected clusters, when the distance measure is replaced with the proposed similarity. We also provide the condition under which mass-connected clusters can be detected, while density-connected clusters cannot.


2013 ◽  
Vol 462-463 ◽  
pp. 438-442
Author(s):  
Ming Gu

Neural network with quadratic junction was described. Structure, properties and unsupervised learning rules of the neural network were discussed. An ART-based hierarchical clustering algorithm using this kind of neural networks was suggested. The algorithm can determine the number of clusters and clustering data. A 2-D artificial data set is used to illustrate and compare the effectiveness of the proposed algorithm and K-means algorithm.


2016 ◽  
Vol 25 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Archana Purwar ◽  
Sandeep Kumar Singh

AbstractThe quality of data is an important task in the data mining. The validity of mining algorithms is reduced if data is not of good quality. The quality of data can be assessed in terms of missing values (MV) as well as noise present in the data set. Various imputation techniques have been studied in MV study, but little attention has been given on noise in earlier work. Moreover, to the best of knowledge, no one has used density-based spatial clustering of applications with noise (DBSCAN) clustering for MV imputation. This paper proposes a novel technique density-based imputation (DBSCANI) built on density-based clustering to deal with incomplete values in the presence of noise. Density-based clustering algorithm proposed by Kriegal groups the objects according to their density in spatial data bases. The high-density regions are known as clusters, and the low-density regions refer to the noise objects in the data set. A lot of experiments have been performed on the Iris data set from life science domain and Jain’s (2D) data set from shape data sets. The performance of the proposed method is evaluated using root mean square error (RMSE) as well as it is compared with existing K-means imputation (KMI). Results show that our method is more noise resistant than KMI on data sets used under study.


Sign in / Sign up

Export Citation Format

Share Document