scholarly journals Cyclic Behaviour of Beam-Column Dowel Connection in Precast Elements

Author(s):  
M. Moldovan ◽  
M. Nedelcu ◽  
Z. Kovacs

Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


2020 ◽  
pp. 127-129
Author(s):  
Ž. P. Cuckič

At the end of a decade-long research work at the Moravamont plant in Gnjilane, a new completely prefabricated building system was created from reinforced concrete and prestressed precast elements on the track, which was called Moravamont 2000. Presented in paper final results demonstrates that the construction is well and rationally designed, that the construction behaviour for the maximum expected earthquake effects with a return period of 500 years, according to the criterion of regulation, is resistant and resistant to an earthquake without major damage.


2021 ◽  
Vol 224 ◽  
pp. 108747
Author(s):  
Jun Wang ◽  
Ming Dai ◽  
Yuanqiang Cai ◽  
Lin Guo ◽  
Yunguo Du ◽  
...  

2021 ◽  
Vol 181 ◽  
pp. 106551
Author(s):  
Sara Oliveira ◽  
Ricardo Costa ◽  
Ashkan Shahbazian ◽  
Carlos Rebelo ◽  
Yukihiro Harada ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 2393-2398
Author(s):  
Rajib Kumar Biswas ◽  
Mistuyasu Iwanami ◽  
Nobuhiro Chijiwa ◽  
Kazuhide Nakayama

Author(s):  
Brent Phares ◽  
Yoon-Si Lee ◽  
Travis K. Hosteng ◽  
Jim Nelson

This paper presents a laboratory investigation on the performance of grouted rebar couplers with the connection details similar to those utilized on the precast concrete elements of the Keg Creek Bridge on US 6 in Iowa. The testing program consisted of a series of static load tests, a fatigue test, and evaluation of the chloride penetration resistance of laboratory specimens. The goal of this testing was to evaluate the ability of the grouted rebar couplers to develop flexural capacity at the joint between the precast elements as well as the durability of the connection. For structural load testing, seven full-scale specimens, each with #14 epoxy-coated rebars spliced by epoxy-coated grouted couplers, were fabricated and tested in three different loading cases: four-point bending, axial tension plus bending, and a cyclic test of the system in bending. The static load testing demonstrated that the applied axial load had a minimal effect on the formation of cracks and overall performance of the connection. When ultra-high performance concrete was used as a bedding grout, the initiation of crack was slightly delayed but no considerable improvement was observed in the magnitude of the crack width during loading or the crack closure on unloading. The results of the seventh specimen, tested in fatigue to 1 million cycles, showed little global displacement and crack width throughout the test, neither of which expanded measurably. No evidence of moisture or chloride penetration was detected at the grouted joint during the 6-month monitoring.


2016 ◽  
Vol 20 (3) ◽  
pp. 299-315
Author(s):  
Massimo Latour

In this work, a recently patented seismic damper to be applied to structures composed by systems of panels is presented. In particular, the article is devoted to characterize the behaviour of the proposed connector by means of an experimental and numerical analysis and to provide some information about the cost of the elements needed to realize the damper, accounting for the manufacturing process. The experimental analysis has regarded five specimens tested under different loading conditions, and it has been used as a term of comparison with the classical systems of connection currently employed in these structures. Afterwards, in the article, a design criterion able to control the capacity and ductility of the device by simply varying the shape of the damper is presented and its accuracy is evaluated by performing finite element analyses. The results of the experimental and finite element analyses are very promising in terms of cyclic behaviour and energy dissipation capacity and reveal that the design of the element can be accurately controlled by means of the proposed approach. Furthermore, the cost estimate has revealed that the proposed damper is also cheaper than the classical solutions with a cost reduction of about 40%.


Sign in / Sign up

Export Citation Format

Share Document