Influence of Rock-Fracture and Water Permeability of Outburst-Prone Coal Bed on its Site Development through the Wells of Hydro-Separation from the Surface

Author(s):  
Yu.M. Biryukov ◽  
2016 ◽  
Vol 136 (5) ◽  
pp. 227-234
Author(s):  
Rikuya Hanawa ◽  
Kuniaki Shibata ◽  
Kenji Saegusa ◽  
Tadashi Takano

Author(s):  
Petar Halachev ◽  
Aleksandra Todeva ◽  
Gergana Georgieva ◽  
Marina Jekova

he report explores and analyzes the application of the most popular programming languages from different organizations: GitHub; Stackoverflow; the TIOBE's Community index. The main client technologies: HTML; CSS; JavaScript; Typescript are presented and analysed. Features are characterized and the advantages and the disadvantages of the server technologies are described: Java; PHP; Python; Ruby. The application areas for web site development technologies have been defined. The creation of a quality web site is a complex and complicated process, but by observing some guidelines and recommendations in the work process can help to select the tools and the technologies in its design and development.


Author(s):  
Van Min Nguyen ◽  
V. A. Eremenko ◽  
M. A. Sukhorukova ◽  
S. S. Shermatova

The article presents the studies into the secondary stress field formed in surrounding rock mass around underground excavations of different cross-sections and the variants of principal stresses at a mining depth greater than 1 km. The stress-strain analysis of surrounding rock mass around development headings was performed in Map3D environment. The obtained results of the quantitative analysis are currently used in adjustment of the model over the whole period of heading and support of operating mine openings. The estimates of the assumed parameters of excavations, as well as the calculations of micro-strains in surrounding rock mass by three scenarios are given. During heading in the test area in granite, dense fracturing and formation of tensile strain zone proceeds from the boundary of e ≥ 350me and is used to determine rough distances from the roof ( H roof) and sidewalls ( H side) of an underground excavation to the 3 boundary e = 350me (probable rock fracture zone). The modeling has determined the structure of secondary stress and strain fields in the conditions of heading operations at great depths.


Sign in / Sign up

Export Citation Format

Share Document