scholarly journals A Review on Biodegradation and Biotransformation of Explosive Chemicals

2018 ◽  
Vol 3 (11) ◽  
pp. 58-65 ◽  
Author(s):  
Thankgod Ositadinma Ndibe ◽  
Benthai Benjamin ◽  
Winnie Chuno Eugene ◽  
Johnson John Usman

Military training activities as well as manufacturing and decommissioning operations, lead to the generation of large quantities of explosive chemicals. Detonation and disposal of these explosive chemicals contaminate soil and ground water, thus posing a threat to living organisms and natural resources. The most commonly used explosives in artillery shells, bombs, grenades and other munitions are 2,4,6-Trinitrotoluene (TNT), Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Due to their recalcitrant nature, toxicity and persistence in the environment, the study of their biodegradation and biotransformation is paramount. This paper reviews the chemistry, fate, degradation and transformation of this explosive chemicals in the natural environment. Emphasis is placed on TNT, RDX and HMX. This review will help scientists to adopt strategies and develop optimum biological treatment scheme for the in situ bioremediation of explosives-contaminated soil especially at firing/impact ranges.

1995 ◽  
Vol 1995 (1) ◽  
pp. 910-911
Author(s):  
Douglas E. Jerger ◽  
Patrick M. Woodhull

ABSTRACT OHM designed and installed an in situ bioremediation system with an above ground water treatment system at a petroleum hydrocarbon distribution and fuel facility. The remediation system consists of an infiltration trench system to deliver treated, amended ground water to the upper silty lens, and an injection well system to deliver water to the lower sand and gravel lens. A French drain is located downgradient of the groundwater injection systems to provide hydraulic control of the site. Recovered ground water is pumped to an on-site treatment system prior to re-injection.


1996 ◽  
Vol 6 (2) ◽  
pp. 57-79 ◽  
Author(s):  
Paul E. Flathman ◽  
Bryon J. Krupp ◽  
Paul Zottola ◽  
Jason R. Trausch ◽  
John H. Carson ◽  
...  

2000 ◽  
Vol 2000 (10) ◽  
pp. 203-224 ◽  
Author(s):  
Robert L. Siegrist ◽  
Michael A. Urynowicz ◽  
Olivia R. West ◽  
Michelle L. Crimi ◽  
Amanda M. Struse ◽  
...  

2013 ◽  
Vol 8 (2) ◽  
pp. 159-178 ◽  

Atrazine, a chlorinated s-triazine group of herbicide is one of the most widely used pesticides in the World. Due to its extensive use, long half-life and various toxic properties, it has very high environmental significance. Up to 22 mg l-1 of atrazine was found in ground water whereas permissible limit of atrazine is in ppb level in drinking water. As per Indian standard there should not be any pesticide present in drinking water. Among many other treatment processes available, Incineration, adsorption, chemical treatment, phytoremediation and biodegradation are the most commonly used ones. Biological degradation of atrazine depends upon various factors like the operating environment, external carbon and nitrogen sources, carbon/ nitrogen ratio (C/N), water content and the bacterial strain. Although, general atrazine degradation pathways are available, the specific pathways in specific conditions are not yet clearly defined. In this paper extensive review has been made on the occurrence of atrazine in surface and ground water bodies, probable sources and causes of its occurrence in water environment, the toxicity of atrazine on various living organisms and its removal by biological processes.


2001 ◽  
Author(s):  
Paul G. Tratnyek ◽  
Richard L. Johnson ◽  
Timothy L. Johnson ◽  
Rosemarie Miehr

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2158
Author(s):  
Yueqin Shi ◽  
Zhanyang Yu ◽  
Zhengjun Li ◽  
Xiaodong Zhao ◽  
Yongjun Yuan

Plastic photodegradation naturally takes 300–500 years, and their chemical degradation typically needs additional energy or causes secondary pollution. The main components of global plastic are polymers. Hence, new technologies are urgently required for the effective decomposition of the polymers in natural environments, which lays the foundation for this study on future plastic degradation. This study synthesizes the in-situ growth of TiO2 at graphene oxide (GO) matrix to form the TiO2@GO photocatalyst, and studies its application in conjugated polymers’ photodegradation. The photodegradation process could be probed by UV-vis absorption originating from the conjugated backbone of polymers. We have found that the complete decomposition of various polymers in a natural environment by employing the photocatalyst TiO2@GO within 12 days. It is obvious that the TiO2@GO shows a higher photocatalyst activity than the TiO2, due to the higher crystallinity morphology and smaller size of TiO2, and the faster transmission of photogenerated electrons from TiO2 to GO. The stronger fluorescence (FL) intensity of TiO2@GO compared to TiO2 at the terephthalic acid aqueous solution indicates that more hydroxyl radicals (•OH) are produced for TiO2@GO. This further confirms that the GO could effectively decrease the generation of recombination centers, enhance the separation efficiency of photoinduced electrons and holes, and increase the photocatalytic activity of TiO2@GO. This work establishes the underlying basic mechanism of polymers photodegradation, which might open new avenues for simultaneously addressing the white pollution crisis in a natural environment.


2021 ◽  
Vol 22 ◽  
pp. 101388
Author(s):  
Shichao Liu ◽  
Zhonglei Xie ◽  
Yintao Zhu ◽  
Yanmiao Zhu ◽  
Yan Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document