scholarly journals Study on Thin Airfoil Theory & Performance Test of Elliptical Wing as Compared to Model Mosquito Wing and NACA 64A012 Mod Airfoil

2018 ◽  
Vol 3 (4) ◽  
pp. 48
Author(s):  
Nesar Ali ◽  
Mostafizur Rahman Komol ◽  
Mohammad Takiuddin Saki

Thin airfoil theory is a simple conception of airfoils that describes angle of attack to lift for incompressible, inviscid flows. It was first devised by famous German-American mathematician Max Munk and therewithal refined by British aerodynamicist Hermann Glauertand others in the 1920s. The thin airfoil theory idealizes that the flow around an airfoil as two-dimensional flow around a thin airfoil. It can be conceived as addressing an airfoil of zero thickness and infinite wingspan. Thin airfoil theory was particularly citable in its day because it provided a well-established theoretical basis for the following important prominence of airfoils in two-dimensional flow like i) on a symmetric shape of airfoil which center of pressure and aerodynamic center remain exactly one quarter of the chord behind the leading edge, ii) on a cambered airfoil, the aerodynamic center lies exactly one quarter of the chord behind the leading edge and iii)the slope of the lift coefficient versus angle of attack line is two pi ( ) units per radian. The fundamental equation of Prandtl’s lifting-line theory; simply states that the geometric angle of attack is equal to the sum of the effective angle plus the induced angle of attack. And also omitted the theory of elliptical wing theory which indicates that the Elliptical wing has better flight performance than any other airfoil. In this experiment we made a model of elliptical wing and test in wind tunnel to get experimental value. We also analyze the model in simulation software for further knowledge. Comparing this practical and experimental value to other airfoil like Mosquito wing and NACA 64A012 airfoil for further research.

2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun Abdul Malek ◽  
Shuhaimi Mansor ◽  
Nor Azwadi Che Sidik ◽  
Agoes Priyanto

Wing configuration is a parameter that affects the performance of wing-in-ground effect (WIG) craft. In this study, the aerodynamic characteristics of a new compound wing were investigated during ground effect. The compound wing was divided into three parts with a rectangular wing in the middle and two reverse taper wings with anhedral angle at the sides. The sectional profile of the wing model is NACA6409. The experiments on the compound wing and the rectangular wing were carried to examine different ground clearances, angles of attack, and Reynolds numbers. The aerodynamic coefficients of the compound wing were compared with those of the rectangular wing, which had an acceptable increase in its lift coefficient at small ground clearances, and its drag coefficient decreased compared to rectangular wing at a wide range of ground clearances, angles of attack, and Reynolds numbers. Furthermore, the lift to drag ratio of the compound wing improved considerably at small ground clearances. However, this improvement decreased at higher ground clearance. The drag polar of the compound wing showed the increment of lift coefficient versus drag coefficient was higher especially at small ground clearances. The Reynolds number had a gradual effect on lift and drag coefficients and also lift to drag of both wings. Generally, the nose down pitching moment of the compound wing was found smaller, but it was greater at high angle of attack and Reynolds number for all ground clearance. The center of pressure was closer to the leading edge of the wing in contrast to the rectangular wing. However, the center of pressure of the compound wing was later to the leading edge at high ground clearance, angle of attack, and Reynolds number.


1999 ◽  
Vol 2 (3) ◽  
pp. 251-262
Author(s):  
P. Gestoso ◽  
A. J. Muller ◽  
A. E. Saez

Author(s):  
Gabriel Machado dos Santos ◽  
Ítalo Augusto Magalhães de Ávila ◽  
Hélio Ribeiro Neto ◽  
João Marcelo Vedovoto

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


1951 ◽  
Vol 2 (4) ◽  
pp. 254-271 ◽  
Author(s):  
L. G. Whitehead ◽  
L. Y. Wu ◽  
M. H. L. Waters

SummmaryA method of design is given for wind tunnel contractions for two-dimensional flow and for flow with axial symmetry. The two-dimensional designs are based on a boundary chosen in the hodograph plane for which the flow is found by the method of images. The three-dimensional method uses the velocity potential and the stream function of the two-dimensional flow as independent variables and the equation for the three-dimensional stream function is solved approximately. The accuracy of the approximate method is checked by comparison with a solution obtained by Southwell's relaxation method.In both the two and the three-dimensional designs the curved wall is of finite length with parallel sections upstream and downstream. The effects of the parallel parts of the channel on the rise of pressure near the wall at the start of the contraction and on the velocity distribution across the working section can therefore be estimated.


Sign in / Sign up

Export Citation Format

Share Document