scholarly journals Thermal Properties of Beef Tallow/Coconut Oil Bio PCM Using T-History Method for Wall Building Applications

2019 ◽  
Vol 4 (11) ◽  
pp. 38-40
Author(s):  
Razali Thiab ◽  
Muhammad Amin ◽  
Hamdani Umar

Thermal energy storage using Phase Change Materials (PCM) is now widely applied to wall buildings. In general, PCM which is used for applications on building walls is organic PCM and has temperature range from 0℃ to 65oC. Beef tallow and coconut oil is a type of organic PCM known as Bio PCM needs to characterize by using the T-History Method. The T-History method is more accurate than Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA). This study aimed to determine the thermal properties of beef tallow/coconut oil PCM using the T-History method. The beef tallow and coconut oil as bio PCM material was used in this study with the variation are respectively: 100%, 70+30%, 60+40%, and 50+50%. Tests are carried out using the T-History method. From the results of testing and analysis obtained supercooling temperature, melting temperature, specific heat, and latent heat for bio PCM beef tallow/coconut oil. The effect of adding coconut oil mixture to beef tallow caused a decrease in melting temperature and supercooling temperature, while the specific heat and latent heat of bio PCM of beef tallow/coconut oil ranged from 2.96-2.19 kJ/kg.℃ and 101.05-72.32 kJ/kg. The result obtained that this bio PCM material of cow beef tallow/coconut oil can apply, as additional material in wall building applications.  

2012 ◽  
Vol 512-515 ◽  
pp. 3007-3010
Author(s):  
Jing Yu Huang ◽  
Shi Lei Lv ◽  
Chen Xi Zhang ◽  
Zhi Wei Wang

This study focuses on the preparation, thermal properties of alkanes eutectic mixtures (n-Octadecane/n-Eicosane, n-Octadecane/n-Docosane and n-Heptadecane /n-Eicosane) as candidate phase change material (PCM) for low temperature latent heat storage systems in building envelopes. Their melting temperature and latent heat were tested by Differential scanning calorimetry (DSC). The testing values were closed to calculation values of accepted theory that ensured the reliability of those datas. The results indicated n-Octadecane/n-Docosane eutectic mixture was more promising PCM for buildings in terms of melting temperature (25.3°C) and latent heat values of melting (158.2J/g).


Author(s):  
Laura Colla ◽  
Laura Fedele ◽  
Simone Mancin ◽  
Sergio Bobbo ◽  
Davide Ercole ◽  
...  

The present work aims at investigating a new challenging use of Aluminum Oxide (Al2O3) nanoparticles to enhance the thermal properties (thermal conductivity, specific heat, and latent heat) of pure paraffin waxes to obtain a new class of Phase Change Materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding 0.5 and 1.0 wt% of Al2O3 nanoparticles in two paraffin waxes having melting temperatures of 45 and 55 °C, respectively. The thermophysical properties such as specific heat, latent heat, and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCMs. Furthermore, a numerical comparison between the use of the pure paraffin waxes and the nano-PCMs obtained in a typical electronics passive cooling device was developed and implemented. A numerical model is accomplished to simulate the heat transfer inside the cavity either with PCM or nano-PCM. Numerical simulations were carried out using the ANSYS-Fluent 15.0 code. Results in terms of solid and liquid phase temperatures and melting time were reported and discussed.


2021 ◽  
Vol 7 ◽  
Author(s):  
Law Torres Sevilla ◽  
Jovana Radulovic

This paper studies the influence of material thermal properties on the charging dynamics in a low temperature Thermal Energy Storage, which combines sensible and latent heat. The analysis is based on a small scale packed bed with encapsulated PCMs, numerically solved using COMSOL Multiphysics. The PCMs studied are materials constructed based on typical thermal properties (melting temperature, density, specific heat capacity (solid and liquid), thermal conductivity (solid and liquid) and the latent heat) of storage mediums in literature. The range of values are: 25–65°C for the melting temperature, 10–500 kJ/kg for the latent heat, 600–1,000 kg/m3 for the density, 0.1–0.4 W/mK (solid and liquid) for the thermal conductivity and 1,000–2,200 J/kgK (solid and liquid) for the specific heat capacity. The temperature change is monitored at three different positions along the tank. The system consists of a 2D tank with L/D ratio of 1 at a starting temperature of 20°C. Water, as the heat transfer fluid, enters the tank at 90°C. Results indicate that latent heat is a leading parameter in the performance of the system, and that the thermal properties of the PCM in liquid phase influence the overall heat absorption more than its solid counterpart.


10.30544/456 ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 325-334
Author(s):  
Dragan Manasijević ◽  
Ljubiša Balanović ◽  
Vladan Ćosović ◽  
Duško Minić ◽  
Milena Premović ◽  
...  

Thermal properties, including melting temperature, latent heat of melting, specific heat capacity and thermal conductivity, of a low-melting In–Sn–Zn eutectic alloy were investigated in this work. The In–Sn–Zn eutectic alloy with nominal composition 52.7In-44.9Sn-2.4Zn (at.%) was prepared by the melting of pure metals under an argon atmosphere. The conducted assessment consisted of both theoretical and experimental approaches. Differential scanning calorimetry (DSC) was used for the measurement of melting temperature and latent heat, and the obtained results were compared with the results of thermodynamic calculations. The measured melting temperature and the latent heat of melting for the In–Sn–Zn eutectic alloy are 106.5±0.1 °C and 28.3±0.1 Jg-1, respectively. Thermal diffusivity and thermal conductivity of the In–Sn–Zn eutectic alloy were studied by the xenon-flash method. The determined thermal conductivity of the investigated eutectic alloy at 25 °C is 42.2±3.4 Wm-1K-1. Apart from providing insight into the possibility for application of the investigated alloy as the metallic phase-change material, the obtained values of thermal properties can also be utilized as input parameters for various simulation processes such as casting and soldering.


Author(s):  
Jamie Trahan ◽  
Sarada Kuravi ◽  
D. Yogi Goswami ◽  
Muhammad Rahman ◽  
Elias Stefanakos

As the importance of latent heat thermal energy storage increases for utility scale concentrating solar power (CSP) plants, there lies a need to characterize the thermal properties and melting behavior of phase change materials (PCMs) that are low in cost and high in energy density. In this paper, the results of an investigation of the melting temperature and latent heat of two binary high temperature salt eutectics are presented. Melting point and latent heat are analyzed for a chloride eutectic and carbonate eutectic using simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analsysis (TGA). High purity materials were used and the handling procedure was carefully controlled to accommodate the hygroscopic nature of the chloride eutectic. The DSC analysis gives the values of thermal properties of the eutectics, which are compared with the calculated (expected/published) values. The thermal stability of the eutectics is also examined by repeated thermal cycling in a DSC and is reported in the paper along with a cost analysis of the salt materials.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Laura Colla ◽  
Davide Ercole ◽  
Laura Fedele ◽  
Simone Mancin ◽  
Oronzio Manca ◽  
...  

The present work aims at investigating a new challenging use of aluminum oxide (Al2O3) nanoparticles to enhance the thermal properties (thermal conductivity, specific heat, and latent heat) of pure paraffin waxes to obtain a new class of phase change materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding 0.5 and 1.0 wt  % of Al2O3 nanoparticles in two paraffin waxes having melting temperatures of 45 and 55 °C, respectively. The thermophysical properties such as specific heat, latent heat, and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCMs. Furthermore, a numerical comparison between the use of the pure paraffin waxes and the nano-PCMs obtained in a typical electronics passive cooling device was developed and implemented. A numerical model is accomplished to simulate the heat transfer inside the cavity either with PCM or nano-PCM. Numerical simulations were carried out using the ansys-fluent 15.0 code. Results in terms of solid and liquid phase fractions and temperatures and melting time were reported and discussed. They showed that the nano-PCMs determine a delay in the melting process with respect to the pure PCMs.


2019 ◽  
Vol 26 (3) ◽  
pp. 39-45
Author(s):  
Wojciech Godlewski ◽  
Mateusz Sierakowski ◽  
Roman Domański ◽  
Jakub Kapuściński ◽  
Tomasz Wiśniewski ◽  
...  

Abstract The purpose of this work was to examine the effect of diamond powder on the thermal properties of phase change materials on the example of octadecane. The experiment involved mixing of diamond powder with a specific granulation with the aforementioned representative of the alkanes group. Two different grain sizes were used: 50 and 250 micrometres. The change of specific heat, latent heat of phase change and degree of supercoiling in newly formed mixtures was compared to the pure forms of the phase-change materials used. Initial mixing with a glass-stirring rod showed strong stratification for each granulation due to the low viscosity of the mixture and too large differences between component densities. It was decided to add amorphous silicon dioxide to the mixtures, which increases density of the mixture. The optimal percentage of amorphous silicon dioxide was estimated experimentally. Measurements of thermal parameters were carried out using DSC technology. The results of the tests of specific heat and latent phase transition heat showed that with the increasing content of diamond, the specific heat of the mixture decreases almost twice, and the latent heat can decrease by up to three times. The effect of diamond powder on reducing the degree of supercoiling of the mixture was also observed. An important observation was that the mixture with higher granulation of diamond powder had greater tendency for sedimentation. This method could be used to increase thermal conductivity and diffusivity of phase change materials and make them viable for use in systems that require cooling at high rate or temperature stabilization, such as control systems in electronic vehicles or aviation industry and at the same time decrease the degree of supercoiling which could increase the efficiency of system.


2019 ◽  
Vol 9 (2) ◽  
pp. 225 ◽  
Author(s):  
Rebecca Ravotti ◽  
Oliver Fellmann ◽  
Nicolas Lardon ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

As global energy demand increases while primary sources and fossil fuels’ availability decrease, research has shifted its focus to thermal energy storage systems as alternative technologies able to cover for the mismatch between demand and supply. Among the different phase change materials available, esters possess particularly favorable properties with reported high enthalpies of fusion, low corrosivity, low toxicity, low supercooling, thermal and chemical stability as well as biodegradability and being derived from renewable feedstock. Despite such advantages, little to no data on the thermal behavior of esters is available due to low commercial availability. This study constitutes a continuation of previous works from the authors on the investigation of fatty esters as novel phase change materials. Here, methyl, pentyl and decyl esters of arachidic acid, and pentyl esters of myristic, palmitic, stearic and behenic acid are synthesized through Fischer esterification with high purities and their properties are studied. The chemical structures and purities are confirmed through Attenuated Total Reflectance Infrared Spectroscopy, Gas Chromatography coupled with Mass Spectroscopy and Nuclear Magnetic Resonance Spectroscopy, while the determination of the thermal properties is performed through Differential Scanning Calorimetry and Thermogravimetric Analysis. In conclusion, some correlations between the melting temperatures and the chemical structures are discovered, and the fatty esters are assessed based on their suitability as phase change materials for latent heat storage applications.


2012 ◽  
Vol 271-272 ◽  
pp. 197-203
Author(s):  
Ting Wei ◽  
Zhen Wang ◽  
Bai Cun Zheng ◽  
Yan Feng Gao ◽  
Wei Hong Guo

A novel form-stable capric acid/organophilic montmorillonite composite for thermal energy storage is developed in this study. The morphology and thermal properties were determined by scanning electron microscope(SEM), polarized optical microscope(POM), differential scanning calorimetry(DSC) and thermogravimetric analyzer(TGA). The DSC results showed that the on-set temperature of the sample with 40% wt CA was closed to 29°C, the latent heat was 35.8 J/g at 56 kPa and 51.5 J/g at 0 kPa, while the on-set temperature of sample with 60% CA was also 29°C, the latent heat was 79.7 J/g at 56 kPa and 80.8 J/g at 0 kPa. TG investigations revealed that the composites had excellent thermal stability above their working temperature ranges. The POM images exhibited phase behaviors of composites to confirm leakage, and the samples with 20% and 40% CA showed good thermal properties. In addition, SEM images presented the microstructure of all the samples. All of the conclusions indicated that sample with 40% wt CA was a better candidate for novel form-stable CA/OMMT composite for low-temperature thermal energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document