Nano-PCMs for Electronics Cooling Applications

Author(s):  
Laura Colla ◽  
Laura Fedele ◽  
Simone Mancin ◽  
Sergio Bobbo ◽  
Davide Ercole ◽  
...  

The present work aims at investigating a new challenging use of Aluminum Oxide (Al2O3) nanoparticles to enhance the thermal properties (thermal conductivity, specific heat, and latent heat) of pure paraffin waxes to obtain a new class of Phase Change Materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding 0.5 and 1.0 wt% of Al2O3 nanoparticles in two paraffin waxes having melting temperatures of 45 and 55 °C, respectively. The thermophysical properties such as specific heat, latent heat, and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCMs. Furthermore, a numerical comparison between the use of the pure paraffin waxes and the nano-PCMs obtained in a typical electronics passive cooling device was developed and implemented. A numerical model is accomplished to simulate the heat transfer inside the cavity either with PCM or nano-PCM. Numerical simulations were carried out using the ANSYS-Fluent 15.0 code. Results in terms of solid and liquid phase temperatures and melting time were reported and discussed.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Laura Colla ◽  
Davide Ercole ◽  
Laura Fedele ◽  
Simone Mancin ◽  
Oronzio Manca ◽  
...  

The present work aims at investigating a new challenging use of aluminum oxide (Al2O3) nanoparticles to enhance the thermal properties (thermal conductivity, specific heat, and latent heat) of pure paraffin waxes to obtain a new class of phase change materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding 0.5 and 1.0 wt  % of Al2O3 nanoparticles in two paraffin waxes having melting temperatures of 45 and 55 °C, respectively. The thermophysical properties such as specific heat, latent heat, and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCMs. Furthermore, a numerical comparison between the use of the pure paraffin waxes and the nano-PCMs obtained in a typical electronics passive cooling device was developed and implemented. A numerical model is accomplished to simulate the heat transfer inside the cavity either with PCM or nano-PCM. Numerical simulations were carried out using the ansys-fluent 15.0 code. Results in terms of solid and liquid phase fractions and temperatures and melting time were reported and discussed. They showed that the nano-PCMs determine a delay in the melting process with respect to the pure PCMs.


2019 ◽  
Vol 26 (4) ◽  
pp. 211-218
Author(s):  
Mateusz Sierakowski ◽  
Wojciech Godlewski ◽  
Roman Domański ◽  
Jakub Kapuściński ◽  
Tomasz Wiśniewski ◽  
...  

AbstractPhase change materials (PCMs) are widely used in numerous engineering fields because of their good heat storage properties and high latent heat of fusion. However, a big group of them has low thermal conductivity and diffusivity, which poses a problem when it comes to effective and relatively fast heat transfer and accumulation. Therefore, their use is limited to systems that do not need to be heated or cooled rapidly. That is why they are used as thermal energy storage systems in both large scale in power plants and smaller scale in residential facilities. Although, if PCMs are meant to play an important role in electronics cooling, heat dissipation, or temperature stabilization in places where the access to cooling water is limited, such as electric automotive industry or hybrid aviation, a number of modifications and improvements needs to be introduced. Investigation whether additional materials of better thermal properties will affect the thermal properties of PCM is therefore of a big interest. An example of such material is diamond powder, which is a popular additive used in abradants. Its thermal diffusivity and conductivity is significantly higher than for a pure PCM. The article presents the results of an analysis of the effect of diamond powder on thermal conductivity and diffusivity of phase change materials in the case of octadecane.


2021 ◽  
Vol 7 ◽  
Author(s):  
Law Torres Sevilla ◽  
Jovana Radulovic

This paper studies the influence of material thermal properties on the charging dynamics in a low temperature Thermal Energy Storage, which combines sensible and latent heat. The analysis is based on a small scale packed bed with encapsulated PCMs, numerically solved using COMSOL Multiphysics. The PCMs studied are materials constructed based on typical thermal properties (melting temperature, density, specific heat capacity (solid and liquid), thermal conductivity (solid and liquid) and the latent heat) of storage mediums in literature. The range of values are: 25–65°C for the melting temperature, 10–500 kJ/kg for the latent heat, 600–1,000 kg/m3 for the density, 0.1–0.4 W/mK (solid and liquid) for the thermal conductivity and 1,000–2,200 J/kgK (solid and liquid) for the specific heat capacity. The temperature change is monitored at three different positions along the tank. The system consists of a 2D tank with L/D ratio of 1 at a starting temperature of 20°C. Water, as the heat transfer fluid, enters the tank at 90°C. Results indicate that latent heat is a leading parameter in the performance of the system, and that the thermal properties of the PCM in liquid phase influence the overall heat absorption more than its solid counterpart.


2019 ◽  
Vol 4 (11) ◽  
pp. 38-40
Author(s):  
Razali Thiab ◽  
Muhammad Amin ◽  
Hamdani Umar

Thermal energy storage using Phase Change Materials (PCM) is now widely applied to wall buildings. In general, PCM which is used for applications on building walls is organic PCM and has temperature range from 0℃ to 65oC. Beef tallow and coconut oil is a type of organic PCM known as Bio PCM needs to characterize by using the T-History Method. The T-History method is more accurate than Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA). This study aimed to determine the thermal properties of beef tallow/coconut oil PCM using the T-History method. The beef tallow and coconut oil as bio PCM material was used in this study with the variation are respectively: 100%, 70+30%, 60+40%, and 50+50%. Tests are carried out using the T-History method. From the results of testing and analysis obtained supercooling temperature, melting temperature, specific heat, and latent heat for bio PCM beef tallow/coconut oil. The effect of adding coconut oil mixture to beef tallow caused a decrease in melting temperature and supercooling temperature, while the specific heat and latent heat of bio PCM of beef tallow/coconut oil ranged from 2.96-2.19 kJ/kg.℃ and 101.05-72.32 kJ/kg. The result obtained that this bio PCM material of cow beef tallow/coconut oil can apply, as additional material in wall building applications.  


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2578
Author(s):  
Joseph D. Williams ◽  
G. P. Peterson

Phase change materials (PCMs) are of increasing interest due to their ability to absorb and store large amounts of thermal energy, with minimal temperature variations. In the phase-change process, these large amounts of thermal energy can be stored with a minimal change in temperature during both the solid/liquid and liquid/vapor phase transitions. As a result, these PCMs are experiencing increased use in applications such as solar energy heating or storage, building insulation, electronic cooling, food storage, and waste heat recovery. Low temperature, nano-enhanced phase change materials (NEPCM) are of particular interest, due to the recent increase in applications related to the shipment of cellular based materials and vaccines, both of which require precise temperature control for sustained periods of time. Information such as PCM and nanoparticle type, the effective goals, and manipulation of PCM thermal properties are assembled from the literature, evaluated, and discussed in detail, to provide an overview of NEPCMs and provide guidance for additional study. Current studies of NEPCMs are limited in scope, with the primary focus of a majority of recent investigations directed at increasing the thermal conductivity and reducing the charging and discharging times. Only a limited number of investigations have examined the issues related to increasing the latent heat to improve the thermal capacity or enhancing the stability to prevent sedimentation of the nanoparticles. In addition, this review examines several other important thermophysical parameters, including the thermal conductivity, phase transition temperature, rheological affects, and the chemical stability of NEPCMs. This is accomplished largely through comparing of the thermophysical properties of the base PCMs and their nano-enhanced counter parts and then evaluating the relative effectiveness of the various types of NEPCMs. Although there are exceptions, for a majority of conventional heat transfer fluids the thermal conductivity of the base PCM generally increases, and the latent heat decreases as the mass fraction of the nanoparticles increases, whereas trends in phase change temperature are often dependent upon the properties of the individual components. A number of recommendations for further study are made, including a better understanding of the stability of NEPCMs such that sedimentation is limited and thus capable of withstanding long-term thermal cycles without significant degradation of thermal properties, along with the identification of those factors that have the greatest overall impact and which PCM combinations might result in the most significant increases in latent heat.


2019 ◽  
Vol 26 (3) ◽  
pp. 39-45
Author(s):  
Wojciech Godlewski ◽  
Mateusz Sierakowski ◽  
Roman Domański ◽  
Jakub Kapuściński ◽  
Tomasz Wiśniewski ◽  
...  

Abstract The purpose of this work was to examine the effect of diamond powder on the thermal properties of phase change materials on the example of octadecane. The experiment involved mixing of diamond powder with a specific granulation with the aforementioned representative of the alkanes group. Two different grain sizes were used: 50 and 250 micrometres. The change of specific heat, latent heat of phase change and degree of supercoiling in newly formed mixtures was compared to the pure forms of the phase-change materials used. Initial mixing with a glass-stirring rod showed strong stratification for each granulation due to the low viscosity of the mixture and too large differences between component densities. It was decided to add amorphous silicon dioxide to the mixtures, which increases density of the mixture. The optimal percentage of amorphous silicon dioxide was estimated experimentally. Measurements of thermal parameters were carried out using DSC technology. The results of the tests of specific heat and latent phase transition heat showed that with the increasing content of diamond, the specific heat of the mixture decreases almost twice, and the latent heat can decrease by up to three times. The effect of diamond powder on reducing the degree of supercoiling of the mixture was also observed. An important observation was that the mixture with higher granulation of diamond powder had greater tendency for sedimentation. This method could be used to increase thermal conductivity and diffusivity of phase change materials and make them viable for use in systems that require cooling at high rate or temperature stabilization, such as control systems in electronic vehicles or aviation industry and at the same time decrease the degree of supercoiling which could increase the efficiency of system.


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


Author(s):  
Yener Usul ◽  
Mustafa Özçatalbaş

Abstract Increasing demand for usage of electronics intensely in narrow enclosures necessitates accurate thermal analyses to be performed. Conduction based FEM (Finite Element Method) is a common and practical way to examine the thermal behavior of an electronic system. First step to perform a numerical analysis for any system is to set up the correct analysis model. In this paper, a method for obtaining the coefficient of thermal conductivity and specific heat capacity of a PCB which has generally a complex composite layup structure composed of conductive layers, and dielectric layers. In the study, above mentioned properties are obtained performing a simple nondestructive experiment and a numerical analysis. In the method, a small portion of PCB is sandwiched from one side at certain pressure by jaws. A couple of linear temperature profiles are applied to the jaws successively. Unknown values are tuned in the analysis model until the results of FEM analysis and experiment match. The values for the coefficient of thermal conductivity and specific heat capacity which the experiment and numerical analysis results match can be said to be the actual values. From this point on, the PCB whose thermal properties are determined can be analyzed numerically for any desired geometry and boundary condition.


Sign in / Sign up

Export Citation Format

Share Document