scholarly journals Solution Of Schrödinger Equation For Poschl-Teller Plus Scarf Non-Central Potential Using Supersymmetry Quantum Mechanics Aproach

2015 ◽  
Vol 4 (1) ◽  
pp. 25-35
Author(s):  
Antomi Saregar

In this paper, we show that the exact energy eigenvalues and eigenfunctions of the Schrödinger equation for charged particles moving in a certain class of noncentral potentials can be easily calculated analytically in a simple and elegant manner by using Supersymmetric method (SUSYQM). We discuss the Poschl-Teller plus Scarf non-central potential systems. Then, by operating the lowering operator we get the ground state wave function, and the excited state wave functions are obtained by operating raising operator repeatedly. The energy eigenvalue is expressed in the closed form obtained using the shape invariant properties. The results are in exact agreement with other methods.Keyword: supersymmetry, non-central potentials, poschl teller plus scarf.

2016 ◽  
Vol 4 (01) ◽  
pp. 1 ◽  
Author(s):  
Cari C ◽  
Suparmi S ◽  
Antomi Saregar

<span>In this paper, we show that the exact energy eigenvalues and eigen functions of the Schrödinger <span>equation for charged particles moving in certain class of noncentral potentials can be easily <span>calculated analytically in a simple and elegant manner by using Supersymmetric method <span>(SUSYQM). We discuss the trigonometric Scarf plus Poschl-Teller systems. Then, by operating <span>the lowering operator we get the ground state wave function, and the excited state wave functions <span>are obtained by operating raising operator repeatedly. The energy eigenvalue is expressed in the <span>closed form obtained using the shape invariant properties. The results are in exact agreement with <span>other methods.</span></span></span></span></span></span></span><br /></span>


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Sameer Ikhdair ◽  
Ramazan Sever

AbstractA new non-central potential, consisting of a pseudoharmonic potential plus another recently proposed ring-shaped potential, is solved. It has the form $$ V(r,\theta ) = \tfrac{1} {8}\kappa r_e^2 \left( {\tfrac{r} {{r_e }} - \tfrac{{r_e }} {r}} \right)^2 + \tfrac{{\beta cos^2 \theta }} {{r^2 sin^2 \theta }} $$. The energy eigenvalues and eigenfunctions of the bound-states for the Schrödinger equation in D-dimensions for this potential are obtained analytically by using the Nikiforov-Uvarov method. The radial and angular parts of the wave functions are obtained in terms of orthogonal Laguerre and Jacobi polynomials. We also find that the energy of the particle and the wave functions reduce to the energy and the wave functions of the bound-states in three dimensions.


2008 ◽  
Vol 17 (07) ◽  
pp. 1327-1334 ◽  
Author(s):  
RAMAZÀN SEVER ◽  
CEVDET TEZCAN

Exact solutions of Schrödinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied.


2021 ◽  
pp. 2150041
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
G. J. Rampho ◽  
P. O. Amadi ◽  
Hewa Y. Abdullah

By employing the concept of conformable fractional Nikiforov–Uvarov (NU) method, we solved the fractional Schrödinger equation with the Morse potential in one dimension. The analytical expressions of the bound state energy eigenvalues and eigenfunctions for the Morse potential were obtained. Numerical results for the energies of Morse potential for the selected diatomic molecules were computed for different fractional parameters chosen arbitrarily. Also, the graphical variation of the bound state energy eigenvalues of the Morse potential for hydrogen dimer with vibrational quantum number and the range of the potential were discussed, with regards to the selected fractional parameters. The vibrational partition function and other thermodynamic properties such as vibrational internal energy, vibrational free energy, vibrational entropy and vibrational specific heat capacity were evaluated in terms of temperature. Our results are new and have not been reported in any literature before.


Author(s):  
Enayatolah Yazdankish

The generalized Woods–Saxon potential plus repulsive Coulomb interaction is considered in this work. The supersymmetry quantum mechanics method is used to get the energy spectrum of Schrodinger equation and also the Nikiforov–Uvarov approach is employed to solve analytically the Schrodinger equation in the framework of quantum mechanics. The potentials with centrifugal term include both exponential and radial terms, hence, the Pekeris approximation is considered to approximate the radial terms. By using the step-by-step Nikiforov–Uvarov method, the energy eigenvalue and wave function are obtained analytically. After that, the spectrum of energy is obtained by the supersymmetry quantum mechanics method. The energy eigenvalues obtained from each method are the same. Then in special cases, the results are compared with former result and a full agreement is observed. In the [Formula: see text]-state, the standard Woods–Saxon potential has no bound state, but with Coulomb repulsive interaction, it may have bound state for zero angular momentum.


2015 ◽  
Vol 30 (12) ◽  
pp. 1550062 ◽  
Author(s):  
Wolfgang Lucha ◽  
Franz F. Schöberl

We constrain the possible bound-state solutions of the spinless Salpeter equation (the most obvious semirelativistic generalization of the nonrelativistic Schrödinger equation) with an interaction between the bound-state constituents given by the kink-like potential (a central potential of hyperbolic-tangent form) by formulating a bunch of very elementary boundary conditions to be satisfied by all solutions of the eigenvalue problem posed by a bound-state equation of this type, only to learn that all results produced by a procedure very much liked by some quantum-theory practitioners prove to be in severe conflict with our expectations.


2016 ◽  
Vol 69 (11) ◽  
pp. 1619-1624 ◽  
Author(s):  
M. Chabab ◽  
A. El Batoul ◽  
M. Oulne ◽  
H. Hassanabadi ◽  
S. Zare

Sign in / Sign up

Export Citation Format

Share Document