scholarly journals Inference of the worldwide invasion routes of the pinewood nematode Bursaphelenchus xylophilus using approximate Bayesian computation analysis

2021 ◽  
Vol 1 ◽  
Author(s):  
Sophie Mallez ◽  
Chantal Castagnone ◽  
Eric Lombaert ◽  
Philippe Castagnone-Sereno ◽  
Thomas Guillemaud
2018 ◽  
Author(s):  
Sophie Mallez ◽  
Chantal Castagnone ◽  
Eric Lombaert ◽  
Philippe Castagnone-Sereno ◽  
Thomas Guillemaud

ABSTRACTPopulation genetics have been greatly beneficial to improve knowledge about biological invasions. Model-based genetic inference methods, such as approximate Bayesian computation (ABC), have brought this improvement to a higher level and are now essential tools to decipher the invasion routes of any invasive species. In this paper, we performed ABC analyses to shed light on the pinewood nematode (PWN) worldwide invasion routes and to identify the source of European populations. Originating from North America, this microscopic worm has been invading Asia since 1905 and Europe since 1999, causing tremendous damage on pine forests. Using microsatellite data, we demonstrated the existence of multiple introduction events in Japan (one involving individuals originating from the USA and one involving individuals with an unknown origin) and China (one involving individuals originating from the USA and one involving individuals originating from Japan). We also found that Portuguese samples had an American origin. Although we observed some discrepancies between descriptive genetic methods and the ABC method, which are worth investigating and are discussed here, the ABC approach definitely helped clarify the worldwide history of the PWN invasion.


Author(s):  
Hsuan Jung ◽  
Paul Marjoram

In this paper, we develop a Genetic Algorithm that can address the fundamental problem of how one should weight the summary statistics included in an approximate Bayesian computation analysis built around an accept/reject algorithm, and how one might choose the tolerance for that analysis. We then demonstrate that using weighted statistics, and a well-chosen tolerance, in such an approximate Bayesian computation approach can result in improved performance, when compared to unweighted analyses, using one example drawn purely from statistics and two drawn from the estimation of population genetics parameters.


Author(s):  
Cecilia Viscardi ◽  
Michele Boreale ◽  
Fabio Corradi

AbstractWe consider the problem of sample degeneracy in Approximate Bayesian Computation. It arises when proposed values of the parameters, once given as input to the generative model, rarely lead to simulations resembling the observed data and are hence discarded. Such “poor” parameter proposals do not contribute at all to the representation of the parameter’s posterior distribution. This leads to a very large number of required simulations and/or a waste of computational resources, as well as to distortions in the computed posterior distribution. To mitigate this problem, we propose an algorithm, referred to as the Large Deviations Weighted Approximate Bayesian Computation algorithm, where, via Sanov’s Theorem, strictly positive weights are computed for all proposed parameters, thus avoiding the rejection step altogether. In order to derive a computable asymptotic approximation from Sanov’s result, we adopt the information theoretic “method of types” formulation of the method of Large Deviations, thus restricting our attention to models for i.i.d. discrete random variables. Finally, we experimentally evaluate our method through a proof-of-concept implementation.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Jason D. Christopher ◽  
Olga A. Doronina ◽  
Dan Petrykowski ◽  
Torrey R. S. Hayden ◽  
Caelan Lapointe ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 312
Author(s):  
Ilze A. Auzina ◽  
Jakub M. Tomczak

Many real-life processes are black-box problems, i.e., the internal workings are inaccessible or a closed-form mathematical expression of the likelihood function cannot be defined. For continuous random variables, likelihood-free inference problems can be solved via Approximate Bayesian Computation (ABC). However, an optimal alternative for discrete random variables is yet to be formulated. Here, we aim to fill this research gap. We propose an adjusted population-based MCMC ABC method by re-defining the standard ABC parameters to discrete ones and by introducing a novel Markov kernel that is inspired by differential evolution. We first assess the proposed Markov kernel on a likelihood-based inference problem, namely discovering the underlying diseases based on a QMR-DTnetwork and, subsequently, the entire method on three likelihood-free inference problems: (i) the QMR-DT network with the unknown likelihood function, (ii) the learning binary neural network, and (iii) neural architecture search. The obtained results indicate the high potential of the proposed framework and the superiority of the new Markov kernel.


Author(s):  
Cesar A. Fortes‐Lima ◽  
Romain Laurent ◽  
Valentin Thouzeau ◽  
Bruno Toupance ◽  
Paul Verdu

Sign in / Sign up

Export Citation Format

Share Document