scholarly journals The effects of Pinus brutia bark extract on pure and mixed continuous cultures of rumen bacteria and archaea, and fermentation characteristics in vitro

2021 ◽  
Vol 91 (5) ◽  
pp. 523-535
Author(s):  
Ahu Demirtas ◽  
◽  
Saad A. A. Musa ◽  
Yasemin Salgirli-Demirbas ◽  
Hakan Ozturk ◽  
...  

The aim of the study was to investigate the effects of Pinus brutia bark extract, which is rich in polyphenolic compounds of tannins, on both pure and mixed continuous cultures of rumen bacteria and archaea, as well as on rumen fermentation characteristics in vitro. Antimicrobial susceptibility assay with pure cultures was carried out in an anaerobic chamber. Pinus brutia bark extract exhibited a potential inhibitor activity (P<0.05) against pure cultures of Ruminococcus flavefaciens, Eubacterium ruminantium, and Methanobacterium formicicum while a growth stimulatory effect (P<0.05) was observed for Ruminoccocus albus, Butyrivibrio fibrisolvens, and Streptococcus bovis. Pinus brutia bark extract only had a potential inhibitor effect (P<0.05) on R. albus at the highest dose (1200 µg/mL). Pinus brutia bark extract also stimulated (P<0.05) the growth of pure cultures of Fibrobacter succinogenes, while it did not affect Megasphaera elsdenii, except at the highest dose. The effects of two doses (75 and 375 mg/L) of P. brutia bark extract on in vitro mixed cultures and rumen fermentation parameters were determined by the rumen simulation technique (Rusitec). Supplementation with P. brutia bark extract led to a quadratic decrease (P<0.05) in the cell numbers of R. flavefaciens. Production of total and individual short chain fatty acids (SCFA), acetate to propionate ratio (C2/C3), total protozoa, ruminal pH, and dry matter digestibility (DMD) did not change in the presence of P. brutia bark extract. Supplementation with both doses of P. brutia bark extract decreased (P<0.05) the ammonia-N concentrations. Ammonia-N concentration was lowest in the high-supplemented group (P<0.05). As a conclusion, inhibitory effects of P. brutia bark extract on some species in the pure cultures were in the same direction as with mixed ruminal cultures, while stimulatory effects disappeared. The lack of inhibitory effects on protozoa and on a large number of Gram-positive rumen bacteria in the mixed cultures suggests that its mechanism of action is not exactly similar to antibiotics. Although P. brutia bark extract did not alter ruminal SCFA, it could have potential to improve ruminal protein utilization without depressing rumen microbial fermentation.

2006 ◽  
Vol 69 (9) ◽  
pp. 2258-2262 ◽  
Author(s):  
WATTHANA THEPPANGNA ◽  
KOICHI OTSUKI ◽  
TOSHIYUKI MURASE

Enterococcus faecium and Enterococcus gallinarum strains were isolated from a commercial probiotic product and the effects of these strains on the growth of Salmonella enterica serovar Enteritidis strain IFO3313 were investigated. Viable cell counts of Salmonella Enteritidis in mixed cultures with the probiotic product isolate of E. faecium were significantly (P &lt; 0.05) lower than those in pure cultures after 6, 8, and 24 h when the cultures were incubated in heart infusion broth at 37 and 41°C. Significant differences in viable cell counts of Salmonella Enteritidis in mixed cultures with the probiotic product isolate of E. gallinarum and those in pure cultures were also observed after 8 and 24 h at 37 and 41°C. Similar observations were shown in mixed cultures of Salmonella Enteritidis with the reference strains of E. faecium GIFU8355 and E. gallinarum ATCC 49573. Significant differences in viable cell counts of these enterococcal strains were not shown among pure and mixed cultures with Salmonella Enteritidis. The pH values in pure and mixed cultures were 7.0 or 7.5 throughout the experiments. E. faecium strains were found to harbor the genes encoding enterocins A and B and showed inhibitory zones with a diameter of 4 to 6 mm against growth of Salmonella Enteritidis in the enterocin production assays. However, the E. gallinarum strains possessed neither of the enterocin genes tested and exhibited no inhibition zone in the enterocin production assays. These results indicated that enterococcal strains exhibit inhibitory effects on the growth of Salmonella Enteritidis and these effects were due to both enterocin and nonenterocin factors.


1991 ◽  
Vol 54 (7) ◽  
pp. 496-501 ◽  
Author(s):  
ARTHUR HINTON ◽  
GEORGE E. SPATES ◽  
DONALD E. CORRIER ◽  
MICHAEL E. HUME ◽  
JOHN R. DELOACH ◽  
...  

A Veillonella species and Enterococcus durans were isolated from the cecal contents of adult broilers. Mixed cultures of Veillonella and E. durans inhibited the growth of Salmonella typhimurium and Escherichia coli 0157:H7 on media containing 2.5% lactose (w/v). The growth of S. typhimurium or E. coli 0157:H7 was not inhibited by mixed cultures containing Veillonella and E. durans on media containing only 0.25% lactose or by pure cultures of Veillonella or E. durans on media containing either 0.25% or 2.5% lactose. The mixed cultures of Veillonella and E. durans produced significantly (P&lt;0.05) more acetic, propionic, and lactic acids in media containing 2.5% lactose than in media containing 0.25% lactose. The inhibition of the enteropathogens was related to the production of lactic acid from lactose by the E. durans and the production of acetic and propionic acids from lactic acid by the Veillonella.


1979 ◽  
Vol 25 (4) ◽  
pp. 429-435 ◽  
Author(s):  
J. deRepentigny ◽  
R. Lévesque ◽  
L. G. Mathieu

In experiments with mixed cultures of Staphylococcus aureus and Candida albicans both in the absence and in the presence of 5-fluorocytosine (5-FC), we have observed that (1) there is an inhibition of S. aureus growth in mixed cultures with C. albicans in media supplemented with 1 μg/mL of 5-FC and that 5-FC has no effect on staphylococci in pure cultures; (2) this inhibition occurred with clinically isolated and laboratory strains and could be reversed by specific metabolites; (3) Staphylococcus aureus was inhibited by filtrates of C. albicans cultures treated with 5-FC and this seemed to be favored by some C. albicans filterable product which can affect the cell wall and the permeability of the staphylococcal cells since they become sensitive to 5-FC; (4) nine other commonly used antimicrobials showed an increased inhibitory activity against S. aureus in mixed cultures with C. albicans; and (5) there is a decrease in the number of precipitating antigens of S. aureus and of the activity of alpha toxin when this species was grown with both C. albicans and 5-FC. Our results indicate that the susceptibility of some species to antimicrobials could be significantly modified in the presence of other species. One cannot exclude that a similar phenomenon could happen in hosts under treatment with antibiotics against infection.


2001 ◽  
Vol 45 (1) ◽  
pp. 243-251 ◽  
Author(s):  
Lorna E. T. Stearne ◽  
Clarissa Kooi ◽  
Wil H. F. Goessens ◽  
Irma A. J. M. Bakker-Woudenberg ◽  
Inge C. Gyssens

ABSTRACT To determine the efficacy of trovafloxacin as a possible treatment for intra-abdominal abscesses, we have developed an anaerobic time-kill technique using different inocula to study the in vitro killing ofBacteroides fragilis in pure culture or in mixed culture with either Escherichia coli or a vancomycin-resistant strain of Enterococcus faecium (VREF). With inocula of 5 × 105 CFU/ml and trovafloxacin concentrations of ≤2 μg/ml, a maximum observed effect (E max) of ≥6.1 (log10 CFU/ml) was attained with all pure and mixed cultures within 24 h. With inocula of 108CFU/ml, a similar E max and a similar concentration to produce 50% of E max(EC50) for B. fragilis were found in both pure cultures and mixed cultures with E. coli. However, to produce a similar killing of B. fragilis in the mixed cultures with VREF, a 14-fold increase in the concentration of trovafloxacin was required. A vancomycin-susceptible strain of E. faecium and a trovafloxacin-resistant strain of E. coli were also found to confer a similar “protective” effect on B. fragilis against the activity of trovafloxacin. Using inocula of 109 CFU/ml, the activity of trovafloxacin was retained for E. coli and B. fragilis and was negligible against VREF. We conclude that this is a useful technique to study the anaerobic killing of mixed cultures in vitro and may be of value in predicting the killing of mixed infections in vivo. The importance of using mixed cultures and not pure cultures is clearly shown by the difference in the killing of B. fragilis in the mixed cultures tested. Trovafloxacin will probably be ineffective in the treatment of infections involving large numbers of enterococci. However, due to its ability to retain activity against large cultures of B. fragilis and E. coli, trovafloxacin could be beneficial in the treatment of intra-abdominal abscesses.


1978 ◽  
Vol 24 (3) ◽  
pp. 298-306 ◽  
Author(s):  
C. W. Forsberg

The inhibitory effects of high concentrations of essential and non-essential trace elements were tested on the rumen microflora using the rate of fermentation in vitro as the assay. The elements (and the concentration causing 50% inhibition) in decreasing order of toxicity were Hg2+ (20 μg/ml), Cu2+ (21 μg/ml), Cr6+ (70 μg/ml), Se4+ (73 μg/ml), Ni2+ (160 μg/ml), Cd2+ (175 μg/ml), As3+ (304 μg/ml), and As5+ (1610 μg/ml). The elements tested that were either weak or non-inhibitory at concentrations greater than 400 μg/ml included Zn2+, Cr2+, Fe2+, Mn2+, Pb2+, and Co2+. Methylmercury was as inhibitory as mercuric chloride to the fermentation. When the inhibitory effect of Cd2+ was tested on separated bacterial and protozoal fractions, it was more inhibitory to the bacteria. The inhibitory effects of trace elements were also determined for a number of axenic cultures of rumen bacteria. The bacteria which most frequently exhibited the greatest sensitivity were Bacteroides succinogenes, Ruminococcus albus, Bacteroides amytophilus, and Eubacterium ruminantium. Those often exhibiting intermediate sensitivities included Butyrivibrio fibrisolvens, Selenomonas niminantium, and Megasphera elsdenii, while Streptococcus bovis was very refractory to all elements tested. Rumen fluid provided a modest protective effect for the bacteria.


Author(s):  
S. Jafari ◽  
Y.M. Goh ◽  
M. A. Rajion ◽  
M. Ebrahimi

The aim of this study was to test the effect of bamboo leaf (BL) on rumen methane gas production and rumen fermentation characteristics, in vitro. Different amounts of BL; CON (0 %), Low BL (LBL, 10 %), Medium BL (MBL, 15%) and High BL (HBL, 25%) of replacement with alfalfa hay (AH) in substrate (50 % concentrate + 50 % AH) were mixed with 30 millilitre (mL) of buffered rumen liquor for 48 h of incubation. Total gas production (mL/250 mg DM) was not affected (P>0.05) among BL treatment groups at different times of incubation. Production of methane gas (mL/250mg DM) decreased at a declining rate (P less than 0.05) with higher BL levels. Methane gas inhibitory effects of BL treatment groups as compared with CON were; 29%, 35% and 62% for LBL, MBL and HBL, respectively. The ratio of acetic/propionic was lowest (P less than 0.05) for HBL (1.67) as compared to CON (2.09).


1978 ◽  
Vol 24 (12) ◽  
pp. 1482-1489 ◽  
Author(s):  
L. G. Mathieu ◽  
D. Dube ◽  
M. Lebrun

The growth of Candida albicans was inhibited by some Escherichia coli strains both in conventional batch cultures and also in a chemostat under conditions of constant addition of fresh medium. Concentrations of 0.2 μg amphotericin B per millilitre and of 2 μg nystatin per millilitre, which caused a slight inhibition of C. albicans in pure culture, exerted a strong fungicidal effect when the yeast was placed in mixed cultures with certain strains of E. coli. Candida albicans cells, inhibited by either E. coli or in mixed culture with polyene antibiotics, appeared larger and less uniformly stained by acridine orange than control cells from pure cultures. Addition of chloramphenicol to the mixed cultures, in quantities sufficient to kill the E. coli cells, abolished the increased sensitivity of C. albicans to amphotericin B or nystatin. In preliminary in vivo tests, E. coli did not sensitize C. albicans to the polyene antibiotics.


Crop Science ◽  
1972 ◽  
Vol 12 (3) ◽  
pp. 277-279 ◽  
Author(s):  
L. P. Bush ◽  
J. A. Boling ◽  
G. Allen ◽  
R. C. Buckner

Sign in / Sign up

Export Citation Format

Share Document