scholarly journals Aerodynamic Numerical Testing of Megawatt Wind Turbine Blade to Find Optimum Angle of Attack

2016 ◽  
Vol 7 (4) ◽  
pp. 1-1 ◽  
Author(s):  
H. Sogukpinar ◽  
I. Bozkurt ◽  
M. Pala ◽  
H. Turkmenler
ROTASI ◽  
2014 ◽  
Vol 16 (3) ◽  
pp. 23
Author(s):  
Abdulhafiz Younis Mokhetar ◽  
Eflita Yohana ◽  
MSK. Tony Suryo Utomo

This paper included in designing and simulating for 2D. It may use two software's called Gambit and FLUENT to generate the data from the fluid flow cases. In this research select two models NACA airfoil NACA4412 and NACA4415. Chose NACA 4412 because lift coefficient is higher than NACA4415. In this study computational flow  over an airfoil at different angles of attack  (0º, 5º,10º,15º ,20º)  using  CFD (Computational fluid dynamics) simulation two dimensional airfoil NACA 4412 and NACA4415 CFD models are  presented using ANSYS-FLUENT software. For this model Using turbulent viscosity k-epsilon (standard wall function)  near  the  wall and wind velocity 5 m/s  Here, NACA 4412 airfoil  profile  is considered  for analysis of wind turbine  blade. Geometry of airfoil is created using GAMBIT 2.4.6 and CFD analysis is carried out using FLUENT 6.3.26 at various  angles  of  attack  from  0º  to  20º. Lift and Drag forces along with the angle of attack are the important parameters in a wind turbine system. The Lift and Drag forces are calculated at different sections for angle of attack from 0o to 20o for low Reynolds number. The analysis  showed that the angle of attack of 10o has high Lift/Drag ratio. The airfoil NACA 4412 is analyzed based on computational fluid dynamics to identify its suitability for its application and good agreement is made between the results


2019 ◽  
Vol 182 ◽  
pp. 154-165 ◽  
Author(s):  
Mohamed M. Elsakka ◽  
Derek B. Ingham ◽  
Lin Ma ◽  
Mohamed Pourkashanian

2021 ◽  
Author(s):  
Jaegwi Go

Abstract The angle of attack is highly sensitive to pitch point in the airfoil shape and the decline of pitch point value induces smaller angle of attack, which implies that airfoil profile possessing closer pitch point to the airfoil tip reacts more sensitively to upcoming wind. The method of conformal transformation functions is employed for airfoil profiles and airfoil surfaces are expressed with a trigonometric series form. Attack angle and ideal lift coefficient distributions are investigated for various airfoil profiles in wind turbine blade regarding conformal transformation and pitch point. The conformed angle function representing the surface angle of airfoil shape generate various attack angle distributions depending on the choice of surface angle function. Moreover, ideal attack angle and ideal lift coefficient are susceptible to the choice of airfoil profiles and uniform loading area. High ideal attack angle signifies high pliability to upcoming wind, and high ideal lift coefficient involves high possibility to generate larger electric energy. According to results obtained pitch point, airfoil shape, uniform loading area, and the conformed airfoil surface angle function are crucial factors in the determination of angle of attack.


Author(s):  
Gwochung Tsai ◽  
Yita Wang ◽  
Yuhchung Hu ◽  
Jaching Jiang

Author(s):  
Aldemir Ap Cavalini Jr ◽  
João Marcelo Vedovoto ◽  
Renata Rocha

Sign in / Sign up

Export Citation Format

Share Document