scholarly journals CFD Analysis of Geothermal Heat Exchanger at Different Orientation

2019 ◽  
Vol 5 (1) ◽  
pp. 1-17
Author(s):  
Anand Kumar Patel ◽  
Pankaj Mishra

The main objective of present work to investigate the arrangements of piping system of earth tube heat exchanger for better thermal comfort. For these work CFD analysis on three different designs of earth tube heat exchanger for summer and winter session for Bhopal location have been performed. computational fluid dynamics analysis have been performed on earth tube heat exchanger using horizontal pipe at various air velocity such as 0.5m/sec, 1 m/sec, 2m/sec, 3m/sec, 4m/sec & 5m/sec for summer session, to get temperature distribution inside the earth tube heat exchanger. Results show that there are drop of temperature in summer session range from 318K to 296K and rise of temperature in winter session range from 288K to 296.7K. It has been observed from the results of computational fluid dynamic analysis that the earth tube heat exchanger using horizontal pipe gives better result as compared with vertical and inclined piping arrangement. So it is recommended that the earth tube heat exchanger using horizontal pipe arrangement may be used for better thermal comfort.

2019 ◽  
Vol 5 (3) ◽  
pp. 10
Author(s):  
Mahtab Alam ◽  
Dr. Dharmendra Singh Rajput

The main objective of the present work is to investigation of optimum design of plate fin tube heat exchanger using Computational fluid dynamic approach and maximizing thermal performance. There are total five designs of plate fin and tube heat exchanger are used in present work and CFD analysis have been performed in it to get maximum heat transfer. It has been observed from CFD analysis that the maximum heat transfer can be achieved from plate fin and tube heat exchanger with elliptical tube arrangement inclined at 30o with 23.22% more heat transfer capacity as compared to circular tube plate pin heat exchanger. So that it is recommended that if the plate fins and tube heat exchanger with inclined elliptical tube used in place of circular tube arrangement, batter heat transfer can be achieved.


2020 ◽  
pp. 13-25
Author(s):  
Nitesh Kumar Singh

A plate fin heat exchanger is a type of heat exchanger design that uses plates and finned chambers to transfer heat between liquids. It is often classified as a compact heat exchanger to emphasize the relatively high ratio between the heat transfer surface and the volume. The main objective of the present work is to investigation of optimum design of plate fin tube heat exchanger using Computational fluid dynamic approach and maximizing thermal performance. There are total five designs of plate fin and tube heat exchanger are used in present work and CFD analysis have been performed in it to get maximum heat transfer. It has been observed from CFD analysis that the maximum heat transfer can be achieved from plate fin and tube heat exchanger with elliptical tube arrangement inclined at 30o with 23.22% more heat transfer capacity as compared to circular tube plate pin heat exchanger. So that it is recommended that if the plate fins and tube heat exchanger with inclined elliptical tube used in place of circular tube arrangement, batter heat transfer can be achieved.


2013 ◽  
Vol 33 (3) ◽  
pp. 567-586 ◽  
Author(s):  
Bilal Yassine ◽  
Kamel Ghali ◽  
Nesreen Ghaddar ◽  
Ghassan Chehab ◽  
Issam Srour

2012 ◽  
Vol 26 (9) ◽  
pp. 2949-2958 ◽  
Author(s):  
Seong Won Hwang ◽  
Dong Hwan Kim ◽  
June Kee Min ◽  
Ji Hwan Jeong

2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


Author(s):  
Haimi Jordaan ◽  
P.S. Heyns ◽  
Siamak Hoseinzadeh

Abstract This work describes the development of a methodology that couples one-dimensional (1D) network elements with three-dimensional (3D) spatial computational fluid dynamic (CFD) elements to analyse shell-and-tube heat exchangers with dense tube bundles. The one-dimensional (1D) elements represent the tube flow while the spatial elements represent the external auxiliary flow. This reduces the computational expense significantly as compared to full CFD analysis of the same system, whilst a detailed transient temperature distribution can still be obtained. The methodology uses a unique combination of relaxation algorithms, a polynomial regression mapping procedure, and discretisation methods to create a coherent numerical methodology. Simulations are performed on a TEMA-FU type shell-and-tube heat exchanger. The methodology was validated against full CFD and indicates errors between the calculated logarithmic mean temperature differences (LMTD) of less than 2% over a range of turbulent flow conditions. Various combinations of media for primary and auxiliary fluids are considered, to test the applicability and robustness of the methodology. Finally, a transient simulation of timed step inputs for the flow rate and temperature of both primary and auxiliary fluids, also corresponds with a full CFD analysis. It is concluded that the proposed 1D-CFD method is effective for simplifying the analysis of flow through tube bundles.


2019 ◽  
Vol 3 (3) ◽  
pp. 169-186 ◽  
Author(s):  
M. H. Masud ◽  
T. Islam ◽  
M. U. H. Joardder ◽  
A. A. Ananno ◽  
P. Dabnichki

Author(s):  
Michel De Paepe ◽  
Christophe T’Joen ◽  
Arnold Janssens ◽  
Marijke Steeman

Earth-air heat exchangers are often used for (pre)heating or (pre)cooling of ventilation air in low energy or passive house standard buildings. Several studies have been published in the passed about the performance of these earth-air heat exchangers [1–8]. Often this is done in relation to the building energy use. Several software codes are available with which the behaviour of the earth-air heat exchanger can be simulated. De Paepe and Janssens published a simplified design methodology for earth-air heat exchangers, based on thermal to hydraulic performance optimisation [7]. Through dynamic simulations and measurements it was shown that the methodology is quite conservative [9–10]. Hollmu¨ller added an earth-air heat exchanger model to TRNSYS [11]. In stead of using earth-air heat exchangers, earth-water heat exchangers are now getting more attention. In this system the ventilation air is indirectly cooled/heated with the water flow in a fin-tube heat exchanger in the inlet of the ventilation channel. The water-glycol mixture transfers heat with the earth by flowing through e.g. a polyethylene tube. In the second part of this paper a design methodology is first derived and then applied to this type of system.


2020 ◽  
Vol 38 (4) ◽  
pp. 845-862
Author(s):  
Saif Nawaz Ahmad ◽  
Om Prakash

Earth air tube heat exchanger (EATHE) is one of the passive technologies which utilize the earth stored heat (renewable energy) for heating/cooling the buildings. EATHE releases heat to earth for cooling space in summer, making the earth a heat sink and extracts earth-stored energy for heating space in winter and makes the earth a heat source. This paper optimizes the Length of the ground heat exchanger and overall heat transfer coefficient of earth air heat exchanger using the Taguchi technique for cooling application. For this purpose, we select six factors such as installation depth of Pipe (A), Pipe's inner diameter (B), Thermal conductivity of pipe material (C), Inlet air temperature (D), Outlet air temperature (E), Inlet air velocity (F). All these factors are taken at three levels, and we select an L27 orthogonal array for experimental runs. The ground heat exchanger's Length and the overall heat transfer coefficient were then calculated for each experimental run. In the Taguchi method, we find the signal to noise ratio for an optimal combination of all six factors and ANOVA to find the order of influencing parameters and their percentage contributions for both the objective parameters. According to our results, the best combination for all the six factors for ground heat exchanger length and overall heat transfer coefficient were A1B1C3D1E3F1 and A2B3C2D3E1F3, respectively. The highest and lowest influencing factors for ground heat exchanger length were the pipe's inner diameter and the pipe's installation depth with their contribution factors of 69.12 and 0.32%, respectively. In contrast, the highest and lowest influencing factors for the overall heat transfer coefficient were the pipe's inner diameter and thermal conductivity of pipe material with their contribution factors of 75.97and 0%, respectively. Hence the order of influence of all the six factors for both the objective parameters was BEFDCA.


Sign in / Sign up

Export Citation Format

Share Document