scholarly journals An intelligent optical fibre pH sensor based on sol-gel advanced material and artificial neural network

2005 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Mohd Nasir Taib ◽  
Faiz Bukhari Mohd Suah ◽  
Musa Ahmad

The application of artificial neural network (ANN) in signal processing of optical fibre pH sensor is presented. The pH sensor is developed based on the use of bromophenol blue indicator immobilized in a sol-gel thin film as a sensing material. A three layer feed-forward network was used and the network training was performed using the back-propagation algorithm. Spectra generated from the pH sensor at several selected wavelengths are used as the input for the ANN. The bromophenol blue indicator, which has a limited dynamic range of 3.00-5.50 pH units, was found to show higher pH dynamic range of 2.00-12.00 and low calibration error after training with ANN. The trained ANN was successfully employed to predict several spectra from unknown buffer solution with an average error of 0.06 pH units.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yasir Hassan Ali ◽  
Roslan Abd Rahman ◽  
Raja Ishak Raja Hamzah

The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN) computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ). The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.


2008 ◽  
Vol 41 (17) ◽  
pp. 3113-3123 ◽  
Author(s):  
Mojtaba Shamsipur ◽  
Fatemeh Abbasitabar ◽  
Vali Zare-Shahabadi ◽  
Shahabadi ◽  
Morteza Akhond

2009 ◽  
Vol 09 (04) ◽  
pp. 507-525 ◽  
Author(s):  
H. HASEENA ◽  
PAUL K. JOSEPH ◽  
ABRAHAM T. MATHEW

Reliable and computationally efficient means of classifying electrocardiogram (ECG) signals has been the subject of considerable research effort in recent years. This paper explores the potential applications of a talented, versatile computation model called the Artificial Neural Network (ANN) in the field of ECG signal classification. Two types of ANNs: Multi-Layered Feed Forward Network (MLFFN) and Probabilistic Neural Networks (PNN) are used to classify seven types of ECG beats. It includes six types of arrhythmia data and normal data. Here, parametric modeling strategies are used in conjunction with ANN classifiers to discriminate ECG signals. Instead of giving the ECG data as such, parameters such as fourth order Auto Regressive model coefficients and Spectral Entropy of the signals has been selected. On testing with the Massachusetts Institute of Technology-Beth Israel Hospital (MIT/BIH) arrhythmia database, it has been observed that PNN has better performance than conventionally used MLFFN in ECG arrhythmia classification. MLFFN with Back Propagation Algorithm gives a classification accuracy of 97.54% and PNN gives 98.96%. The classification by PNN also has an advantage that the computation time for classification is lower than that of MLFFN.


Aviation ◽  
2015 ◽  
Vol 19 (2) ◽  
pp. 90-103 ◽  
Author(s):  
Panarat Srisaeng ◽  
Glenn S. Baxter ◽  
Graham Wild

This study focuses on predicting Australia‘s low cost carrier passenger demand and revenue passenger kilometres performed (RPKs) using traditional econometric and artificial neural network (ANN) modelling methods. For model development, Australia‘s real GDP, real GDP per capita, air fares, Australia‘s population and unemployment, tourism (bed spaces) and 4 dummy variables, utilizing quarterly data obtained between 2002 and 2012, were selected as model parameters. The neural network used multi-layer perceptron (MLP) architecture that compromised a multi-layer feed-forward network and the sigmoid and linear functions were used as activation functions with the feed forward‐back propagation algorithm. The ANN was applied during training, testing and validation and had 11 inputs, 9 neurons in the hidden layers and 1 neuron in the output layer. When comparing the predictive accuracy of the two techniques, the ANNs provided the best prediction and showed that the performance of the ANN model was better than that of the traditional multiple linear regression (MLR) approach. The highest R-value for the enplaned passengers ANN was around 0.996 and for the RPKs ANN was round 0.998, respectively.


2010 ◽  
Vol 39 ◽  
pp. 555-561 ◽  
Author(s):  
Qing Hua Luan ◽  
Yao Cheng ◽  
Zha Xin Ima

The establishing of a precise simulation model for runoff prediction in river with several tributaries is the difficulty of flood forecast, which is also one of the difficulties in hydrologic research. Due to the theory of Artificial Neural Network, using Back Propagation algorithm, the flood forecast model for ShiLiAn hydrologic station in Minjiang River is constructed and validated in this study. Through test, the result shows that the forecast accuracy is satisfied for all check standards of flood forecast and then proves the feasibility of using nonlinear method for flood forecast. This study provides a new method and reference for flood control and water resources management in the local region.


Author(s):  
M. Yasin Pir ◽  
Mohamad Idris Wani

Speech forms a significant means of communication and the variation in pitch of a speech signal of a gender is commonly used to classify gender as male or female. In this study, we propose a system for gender classification from speech by combining hybrid model of 1-D Stationary Wavelet Transform (SWT) and artificial neural network. Features such as power spectral density, frequency, and amplitude of human voice samples were used to classify the gender. We use Daubechies wavelet transform at different levels for decomposition and reconstruction of the signal. The reconstructed signal is fed to artificial neural network using feed forward network for classification of gender. This study uses 400 voice samples of both the genders from Michigan University database which has been sampled at 16000 Hz. The experimental results show that the proposed method has more than 94% classification efficiency for both training and testing datasets.


Sign in / Sign up

Export Citation Format

Share Document