scholarly journals Artificial Neural Network Model for Monitoring Oil Film Regime in Spur Gear Based on Acoustic Emission Data

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yasir Hassan Ali ◽  
Roslan Abd Rahman ◽  
Raja Ishak Raja Hamzah

The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN) computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ). The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.

Aviation ◽  
2015 ◽  
Vol 19 (2) ◽  
pp. 90-103 ◽  
Author(s):  
Panarat Srisaeng ◽  
Glenn S. Baxter ◽  
Graham Wild

This study focuses on predicting Australia‘s low cost carrier passenger demand and revenue passenger kilometres performed (RPKs) using traditional econometric and artificial neural network (ANN) modelling methods. For model development, Australia‘s real GDP, real GDP per capita, air fares, Australia‘s population and unemployment, tourism (bed spaces) and 4 dummy variables, utilizing quarterly data obtained between 2002 and 2012, were selected as model parameters. The neural network used multi-layer perceptron (MLP) architecture that compromised a multi-layer feed-forward network and the sigmoid and linear functions were used as activation functions with the feed forward‐back propagation algorithm. The ANN was applied during training, testing and validation and had 11 inputs, 9 neurons in the hidden layers and 1 neuron in the output layer. When comparing the predictive accuracy of the two techniques, the ANNs provided the best prediction and showed that the performance of the ANN model was better than that of the traditional multiple linear regression (MLR) approach. The highest R-value for the enplaned passengers ANN was around 0.996 and for the RPKs ANN was round 0.998, respectively.


2009 ◽  
Vol 09 (04) ◽  
pp. 507-525 ◽  
Author(s):  
H. HASEENA ◽  
PAUL K. JOSEPH ◽  
ABRAHAM T. MATHEW

Reliable and computationally efficient means of classifying electrocardiogram (ECG) signals has been the subject of considerable research effort in recent years. This paper explores the potential applications of a talented, versatile computation model called the Artificial Neural Network (ANN) in the field of ECG signal classification. Two types of ANNs: Multi-Layered Feed Forward Network (MLFFN) and Probabilistic Neural Networks (PNN) are used to classify seven types of ECG beats. It includes six types of arrhythmia data and normal data. Here, parametric modeling strategies are used in conjunction with ANN classifiers to discriminate ECG signals. Instead of giving the ECG data as such, parameters such as fourth order Auto Regressive model coefficients and Spectral Entropy of the signals has been selected. On testing with the Massachusetts Institute of Technology-Beth Israel Hospital (MIT/BIH) arrhythmia database, it has been observed that PNN has better performance than conventionally used MLFFN in ECG arrhythmia classification. MLFFN with Back Propagation Algorithm gives a classification accuracy of 97.54% and PNN gives 98.96%. The classification by PNN also has an advantage that the computation time for classification is lower than that of MLFFN.


2005 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Mohd Nasir Taib ◽  
Faiz Bukhari Mohd Suah ◽  
Musa Ahmad

The application of artificial neural network (ANN) in signal processing of optical fibre pH sensor is presented. The pH sensor is developed based on the use of bromophenol blue indicator immobilized in a sol-gel thin film as a sensing material. A three layer feed-forward network was used and the network training was performed using the back-propagation algorithm. Spectra generated from the pH sensor at several selected wavelengths are used as the input for the ANN. The bromophenol blue indicator, which has a limited dynamic range of 3.00-5.50 pH units, was found to show higher pH dynamic range of 2.00-12.00 and low calibration error after training with ANN. The trained ANN was successfully employed to predict several spectra from unknown buffer solution with an average error of 0.06 pH units.


Author(s):  
Pooja Yadav ◽  
Atish Sagar

Rainfall prediction is clearly of great importance for any country. One would like to make long term prediction, i.e. predict total monsoon rainfall a few weeks or months and in advance short term prediction, i.e. predict rainfall over different locations a few days in advance [1]. Predicted by using its correlation with observed parameter. Several regression and neural network based models are currently available. While Artificial Neural Network provide a great deal of promise, they also embody much uncertainty [2,3]. In this paper, different artificial neural network models have been created for the rainfall prediction of Uttarakhand region in India. These ANN models were created using training algorithms namely, feed-forward back propagation algorithm [4,5]. The number of neurons for all the models was kept at 10. The mean squared error was measured for each model and the best accuracy was obtained by the feed-forward back propagation algorithm with MSE value as low as 0.00547823.


2018 ◽  
Author(s):  
Rizki Eka Putri ◽  
Denny Darlis

This article was under review for ICELTICS 2018 -- In the medical world there is still service dissatisfaction caused by lack of blood type testing facility. If the number of tested blood arise, a lot of problems will occur so that electronic devices are needed to determine the blood type accurately and in short time. In this research we implemented an Artificial Neural Network on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board to identify the blood type. This research uses blood sample image as system input. VHSIC Hardware Discription Language is the language to describe the algorithm. The algorithm used is feed-forward propagation of backpropagation neural network. There are 3 layers used in design, they are input, hidden1, and output. At hidden1layer has two neurons. In this study the accuracy of detection obtained are 92%, 92%, 92%, 90% and 86% for 32x32, 48x48, 64x64, 80x80, and 96x96 pixel blood image resolution, respectively.


2019 ◽  
Vol 29 (9) ◽  
pp. 091101 ◽  
Author(s):  
Nikita Frolov ◽  
Vladimir Maksimenko ◽  
Annika Lüttjohann ◽  
Alexey Koronovskii ◽  
Alexander Hramov

2010 ◽  
Vol 39 ◽  
pp. 555-561 ◽  
Author(s):  
Qing Hua Luan ◽  
Yao Cheng ◽  
Zha Xin Ima

The establishing of a precise simulation model for runoff prediction in river with several tributaries is the difficulty of flood forecast, which is also one of the difficulties in hydrologic research. Due to the theory of Artificial Neural Network, using Back Propagation algorithm, the flood forecast model for ShiLiAn hydrologic station in Minjiang River is constructed and validated in this study. Through test, the result shows that the forecast accuracy is satisfied for all check standards of flood forecast and then proves the feasibility of using nonlinear method for flood forecast. This study provides a new method and reference for flood control and water resources management in the local region.


Sign in / Sign up

Export Citation Format

Share Document