Application of Artificial Neural Network for Automatic Contingency Analysis in Power Security Assessment

2006 ◽  
Vol 3 (1) ◽  
pp. 11
Author(s):  
Ismail Musirin ◽  
Titik Khawa Abdul Rahman

Several incidents that occurred around the world involving power failure caused by unscheduled line outages were identified as one of the main contributors to power failure and cascading blackout in electric power environment. With the advancement of computer technologies, artificial intelligence (AI) has been widely accepted as one method that can be applied to predict the occurrence of unscheduled disturbance. This paper presents the development of automatic contingency analysis and ranking algorithm for the application in the Artificial Neural Network (ANN). The ANN is developed in order to predict the post-outage severity index from a set of pre-outage data set. Data were generated using the newly developed automatic contingency analysis and ranking (ACAR) algorithm. Tests were conducted on the 24-bus IEEE Reliability Test Systems. Results showed that the developed technique is feasible to be implemented practically and an agreement was achieved in the results obtained from the tests. The developed ACAR can be utilised for further testing and implementation in other IEEE RTS test systems particularly in the system, which required fast computation time. On the other hand, the developed ANN can be used for predicting the post-outage severity index and hence system stability can be evaluated.

2006 ◽  
Vol 3 (1) ◽  
pp. 11
Author(s):  
Ismail Musirin ◽  
Titik Khawa Abdul Rahman

Several incidents that occurred around the world involving power failure caused by unscheduled line outages were identified as one of the main contributors to power failure and cascading blackout in electric power environment. With the advancement of computer technologies, artificial intelligence (AI) has been widely accepted as one method that can be applied to predict the occurrence of unscheduled disturbance. This paper presents the development of automatic contingency analysis and ranking algorithm for the application in the Artificial Neural Network (ANN). The ANN is developed in order to predict the post-outage severity index from a set of pre-outage data set. Data were generated using the newly developed automatic contingency analysis and ranking (ACAR) algorithm. Tests were conducted on the 24-bus IEEE Reliability Test Systems. Results showed that the developed technique is feasible to be implemented practically and an agreement was achieved in the results obtained from the tests. The developed ACAR can be utilised for further testing and implementation in other IEEE RTS test systems particularly in the system, which required fast computation time. On the other hand, the developed ANN can be used for predicting the post-outage severity index and hence system stability can be evaluated.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


Agromet ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 24
Author(s):  
Satyanto Krido Saptomo

<em>Artificial neural network (ANN) approach was used to model energy dissipation process into sensible heat and latent heat (evapotranspiration) fluxes. The ANN model has 5 inputs which are leaf temperature T<sub>l</sub>, air temperature T<sub>a</sub>, net radiation R<sub>n</sub>, wind speed u<sub>c</sub> and actual vapor pressure e<sub>a</sub>. Adjustment of ANN was conducted using back propagation technique, employing measurement data of input and output parameters of the ANN. The estimation results using the adjusted ANN shows its capability in resembling the heat dissipation process by giving outputs of sensible and latent heat fluxes closed to its respective measurement values as the measured input values are given.  The ANN structure presented in this paper suits for modeling similar process over vegetated surfaces, but the adjusted parameters are unique. Therefore observation data set for each different vegetation and adjustment of ANN are required.</em>


2020 ◽  
Vol 6 (4) ◽  
pp. 120-126
Author(s):  
A. Malikov

In this paper we can see that identified computer incidents are subject for diagnostics, during which the characteristics of information security violations are clarified (purpose, causes, consequences, etc.). To diagnose computer incidents, we can use methods of automation while collection and processing the events that occur as a result of the implementation of scenarios for information security violations. Artificial neural networks can be used to solve the classification problem of assigning diagnostic data set (information image of a computer incident) to one of the possible values of the violation characteristic. The purpose of this work is to adapt the structure of an artificial neural network that allows the accuracy diagnostics of computer incidents when new training examples appear.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yadollah Abdollahi ◽  
Azmi Zakaria ◽  
Nor Asrina Sairi ◽  
Khamirul Amin Matori ◽  
Hamid Reza Fard Masoumi ◽  
...  

The artificial neural network (ANN) modeling ofm-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration ofm-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software’s option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.


2014 ◽  
Vol 17 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Gurjeet Singh ◽  
Rabindra K. Panda ◽  
Marc Lamers

The reported study was undertaken in a small agricultural watershed, namely, Kapgari in Eastern India having a drainage area of 973 ha. The watershed was subdivided into three sub-watersheds on the basis of drainage network and land topography. An attempt was made to relate the continuously monitored runoff data from the sub-watersheds and the whole-watershed with the rainfall and temperature data using the artificial neural network (ANN) technique. The reported study also evaluated the bias in the prediction of daily runoff with shorter length of training data set using different resampling techniques with the ANN modeling. A 10-fold cross-validation (CV) technique was used to find the optimum number of hidden neurons in the hidden layer and to avoid neural network over-fitting during the training process for shorter length of data. The results illustrated that the ANN models developed with shorter length of training data set avoid neural network over-fitting during the training process, using a 10-fold CV method. Moreover, the biasness was investigated using the bootstrap resampling technique based ANN (BANN) for short length of training data set. In comparison with the 10-fold CV technique, the BANN is more efficient in solving the problems of the over-fitting and under-fitting during training of models for shorter length of data set.


Sign in / Sign up

Export Citation Format

Share Document