scholarly journals Artificial Neural Network Modelling of Photodegradation in Suspension of Manganese Doped Zinc Oxide Nanoparticles under Visible-Light Irradiation

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yadollah Abdollahi ◽  
Azmi Zakaria ◽  
Nor Asrina Sairi ◽  
Khamirul Amin Matori ◽  
Hamid Reza Fard Masoumi ◽  
...  

The artificial neural network (ANN) modeling ofm-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration ofm-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software’s option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.

2017 ◽  
Vol 7 (1.1) ◽  
pp. 591
Author(s):  
M. Shyamala Devi ◽  
A.N. Sruthi ◽  
P. Balamurugan

At present, skin cancers are extremely the most severe and life-threatening kind of cancer. The majority of the pores and skin cancers are completely remediable at premature periods. Therefore, a premature recognition of pores and skin cancer can effectively protect the patients. Due to the progress of modern technology, premature recognition is very easy to identify. It is not extremely complicated to discover the affected pores and skin cancers with the exploitation of Artificial Neural Network (ANN). The treatment procedure exploits image processing strategies and Artificial Intelligence. It must be noted that, the dermoscopy photograph of pores and skin cancer is effectively determined and it is processed to several pre-processing for the purpose of noise eradication and enrichment in image quality. Subsequently, the photograph is distributed through image segmentation by means of thresholding. Few components distinctive for skin most cancers regions. These features are mined the practice of function extraction scheme - 2D Wavelet Transform scheme. These outcomes are provides to the Back-Propagation Neural (BPN) Network for effective classification. This completely categorizes the data set into either cancerous or non-cancerous. 


2011 ◽  
Vol 94 (1) ◽  
pp. 322-326
Author(s):  
Mohammadreza Khanmohammadi ◽  
Amir Bagheri Garmarudi ◽  
Mohammad Babaei Rouchi ◽  
Nafiseh Khoddami

Abstract A method has been established for simultaneous determination of sodium sulfate, sodium carbonate, and sodium tripolyphosphate in detergent washing powder samples based on attenuated total reflectance Fourier transform IR spectrometry in the mid-IR spectral region (800–1550 cm−1). Genetic algorithm (GA) wavelength selection followed by feed forward back-propagation artificial neural network (BP-ANN) was the chemometric approach. Root mean square error of prediction for BP-ANN and GA-BP-ANN was 0.0051 and 0.0048, respectively. The proposed method is simple, with no tedious pretreatment step, for simultaneous determination of the above-mentioned components in commercial washing powder samples.


Author(s):  
М. М. М. Елшами ◽  
А. Н. Тиратурян ◽  
А. Н. Канищев

Постановка задачи. Рассматриваются вопросы использования искусственных нейронных сетей при решении задач обработки результатов инструментальных регистраций чаш прогибов нежесткой дорожной одежды с использованием установок ударного нагружения FWD . Результаты. Проведен анализ и отмечены недостатки существующих методов обработки экспериментальных чаш прогибов, в частности метода обратного расчета модулей упругости слоев дорожных одежд, заключающиеся в длительном времени выполнения расчетов и неустойчивости получаемых результатов. Построена структура искусственной нейронной сети для определения модулей упругости слоев дорожной одежды. Обучение искусственной нейронной сети осуществлялось с использованием метода обратного распространения ошибки. Выводы. Разработанная нейронная сеть продемонстрировала хорошие результаты при обучении по тестовому набору данных, а также высокую точность прогнозирования модулей упругости слоев дорожных одежд. Statement of the problem. The article is devoted to the use of artificial neural networks in solving the problems of processing the results of instrumental recording of bowls of deflections of non-rigid road surfacing using FWD shock loading settings. Results. The analysis was carried out, the shortcomings of the existing processing methods were identified, in particular the backcalculation method, which involves a long calculation time, and the instability of the results obtained. The structure of the artificial neural network was designed to determine the elastic moduli of the pavement layers. Training of an artificial neural network was carried out using the method of back propagation of error. Conclusions. The developed neural network has shown good results in training on the test data set, as well as high accuracy of prediction of the elastic moduli of the pavement.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


Author(s):  
M. M. M. Elshamy ◽  
A. N. Tiraturyan

Statement of the problem. The article is devoted to the use of artificial neural networks in solving the problems of processing the results of instrumental recording of bowls of flexible pavement deflections using FWD shock loading settings. Results. The analysis was carried out, the shortcomings of the existing processing methods were noted, in particular the “backcalculation” method, which consists of a long calculation time, and the instability of the results obtained. The structure of the artificial neural network was built to determine the elastic moduli of the pavement layers. Training of an artificial neural network was carried out using the method of back propagation of error. Conclusions. The developed neural network has shown good results in training on the test data set, as well as high accuracy of prediction of the elastic moduli of the pavement.


2020 ◽  
Vol 16 (8) ◽  
pp. 1083-1092
Author(s):  
Mojtaba Mohammadpoor ◽  
Roya Mohammadzadeh Kakhki ◽  
Hakimeh Assadi

Background:: Simultaneous determination of medication components in pharmaceutical samples using ordinary methods have some difficulties and therefore these determinations usually were made by expensive methods and instruments. Chemometric methods are an effective way to analyze several components simultaneously. Objective:: In this paper, a novel approach based on Bayesian regularized artificial neural network is developed for the determination of Loratadine, Naproxen, and Diclofenac in water using UV-Vis spectroscopy. Methods: A dataset is collected by performing several chemical experiments and recording the UV-Vis spectra and actual constituent values. The effect of a different number of neurons in the hidden layer was analyzed based on final mean square error, and the optimum number was selected. Principle Component Analysis (PCA) was also applied to the data. Other back-propagation methods, such as Levenberg-Marquardt, scaled conjugate gradient, and resilient backpropagation, were tested. Results:: In order to see the proposed network performance, it was performed on two crossvalidation methods, namely partitioning data into train and test parts, and leave-one-out technique. Mean square errors between expected results and predicted ones implied that the proposed method has a strong ability in predicting the expected values. Conclusion:: he results showed that the Bayesian regularization algorithm has the best performance among other methods for simultaneous determination of Loratadine, Naproxen, and Diclofenac in water samples.


2021 ◽  
Vol 39 (1B) ◽  
pp. 11-20
Author(s):  
Hanaa M. Ahmad ◽  
Shrooq R. Hameed

A human eye is a vital organ responsible for a person's vision. So, the early detection of eye diseases is essential. The objective of this paper deals with diagnosing of seven different external eye diseases that can be recognized by a human eye. These diseases cause problems either in eye pupil, in sclera of eye or in both or in eyelid. Color histogram and texture features extraction techniques with classification technique are used to achieve the goal of diagnosing external eye diseases.  Hue Min Max Diff (HMMD) color space is used to extract color histogram and texture features which were fed to Back Propagation Artificial Neural Network (BPANN) for classification. The comparative study states that the features extracted from HMMD color space is better than other features like Histogram of Oriented Gradient (HOG) features and give the same accuracy as features extracted directly from medical expert recorded symptoms. The proposed method is applied on external eye diseases data set consisting of 416 images with an accuracy rate of 85.26315%, which is the major result that was achieved in this study.


Sign in / Sign up

Export Citation Format

Share Document