scholarly journals Efficient Edge Detection Using Fuzzy Heuristic Particle Swarm Optimization

2009 ◽  
Vol 6 (1) ◽  
pp. 43
Author(s):  
Noor Elaiza Abdul Khalid ◽  
Mazani Manaf ◽  
Mohd Ezane Aziz

This paper presents a hybridization of Particle Swarm Optimization (PSO) and Fuzzy edge detector. The edge detector is used as the initial population and as the objective function. The purpose of hybridizing the algorithm is to create an optimized edge detector. Classical Fuzzy Heuristics (CFH) detects thick edges. These thick edges need to be optimized to obtain a thin line. In this research the PSO is used to optimize the edge detection detected by the CFH algorithm and it is referred to as FHPSO. The test images are radiographs images of the metacarpal. These images have been used, because there is a need to detect strong and thin edges. Radiograph images are noisy in nature, which makes it difficult to measure the cortical thickness, the cortical outline of the inner cortical and outer cortical of the long tubular bone. The outer cortical edges are considered to be the strong edges due to high discontinuity values and the inner cortical edges are considered weak edges due to low their discontinuity values. The performance of FHPSO in detecting edges has been shown to be quite efficient.

2015 ◽  
Vol 785 ◽  
pp. 495-499
Author(s):  
Siti Amely Jumaat ◽  
Ismail Musirin

The paper presents a comparison of performance Static Var Compensator (SVC) and Thyristor Controlled Series Compensator (TCSC) with objective function to minimize the transmission loss, improve the voltage and monitoring the cost of installation. Simulation performed on standard IEEE 30-Bus RTS and indicated that EPSO a feasible to achieve the objective function.


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 35-43
Author(s):  
K. M. Ang ◽  
Z. S. Yeap ◽  
C. E. Chow ◽  
W. Cheng ◽  
W. H. Lim

Different variants of particle swarm optimization (PSO) algorithms were introduced in recent years with various improvements to tackle different types of optimization problems more robustly. However, the conventional initialization scheme tends to generate an initial population with relatively inferior solution due to the random guess mechanism. In this paper, a PSO variant known as modified PSO with chaotic initialization scheme is introduced to solve unconstrained global optimization problems more effectively, by generating a more promising initial population. Experimental studies are conducted to assess and compare the optimization performance of the proposed algorithm with four existing well-establised PSO variants using seven test functions. The proposed algorithm is observed to outperform its competitors in solving the selected test problems.


Author(s):  
Kun-Yung Chen ◽  
Te-Wen Tu

Abstract An inverse methodology is proposed to estimate a time-varying heat transfer coefficient (HTC) for a hollow cylinder with time-dependent boundary conditions of different kinds on inner and outer surfaces. The temperatures at both the inner surface and the interior domain are measured for the hollow cylinder, while the time history of HTC of the outer surface will be inversely determined. This work first expressed the unknown function of HTC in a general form with unknown coefficients, and then regarded these unknown coefficients as the estimated parameters which can be randomly searched and found by the self-learning particle swarm optimization (SLPSO) method. The objective function which wants to be minimized was found with the absolute errors between the measured and estimated temperatures at several measurement times. If the objective function converges toward the null, the inverse solution of the estimated HTC will be found eventually. From numerical experiments, when the function of HTC with exponential type is performed, the unknown coefficients of the HTC function can be accurately estimated. On the contrary, when the function of HTC with a general type is conducted, the unknown coefficients of HTC are poorly estimated. However, the estimated coefficients of an HTC function with the general type can be regarded as the equivalent coefficients for the real function of HTC.


2021 ◽  
Vol 11 (20) ◽  
pp. 9772
Author(s):  
Xueli Shen ◽  
Daniel C. Ihenacho

The method of searching for an optimal solution inspired by nature is referred to as particle swarm optimization. Differential evolution is a simple but effective EA for global optimization since it has demonstrated strong convergence qualities and is relatively straightforward to comprehend. The primary concerns of design engineers are that the traditional technique used in the design process of a gas cyclone utilizes complex mathematical formulas and a sensitivity approach to obtain relevant optimal design parameters. The motivation of this research effort is based on the desire to simplify complex mathematical models and the sensitivity approach for gas cyclone design with the use of an objective function, which is of the minimization type. The process makes use of the initial population generated by the DE algorithm, and the stopping criterion of DE is set as the fitness value. When the fitness value is not less than the current global best, the DE population is taken over by PSO. For each iteration, the new velocity and position are updated in every generation until the optimal solution is achieved. When using PSO independently, the adoption of a hybridised particle swarm optimization method for the design of an optimum gas cyclone produced better results, with an overall efficiency of 0.70, and with a low cost at the rate of 230 cost/second.


2020 ◽  
Vol 14 (4) ◽  
pp. 285-311
Author(s):  
Bernd Bassimir ◽  
Manuel Schmitt ◽  
Rolf Wanka

Abstract We study the variant of Particle Swarm Optimization that applies random velocities in a dimension instead of the regular velocity update equations as soon as the so-called potential of the swarm falls below a certain small bound in this dimension, arbitrarily set by the user. In this case, the swarm performs a forced move. In this paper, we are interested in how, by counting the forced moves, the swarm can decide for itself to stop its movement because it is improbable to find better candidate solutions than the already-found best solution. We formally prove that when the swarm is close to a (local) optimum, it behaves like a blind-searching cloud and that the frequency of forced moves exceeds a certain, objective function-independent value. Based on this observation, we define stopping criteria and evaluate them experimentally showing that good candidate solutions can be found much faster than setting upper bounds on the iterations and better solutions compared to applying other solutions from the literature.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feng Qian ◽  
Mohammad Reza Mahmoudi ◽  
Hamïd Parvïn ◽  
Kim-Hung Pho ◽  
Bui Anh Tuan

Conventional optimization methods are not efficient enough to solve many of the naturally complicated optimization problems. Thus, inspired by nature, metaheuristic algorithms can be utilized as a new kind of problem solvers in solution to these types of optimization problems. In this paper, an optimization algorithm is proposed which is capable of finding the expected quality of different locations and also tuning its exploration-exploitation dilemma to the location of an individual. A novel particle swarm optimization algorithm is presented which implements the conditioning learning behavior so that the particles are led to perform a natural conditioning behavior on an unconditioned motive. In the problem space, particles are classified into several categories so that if a particle lies within a low diversity category, it would have a tendency to move towards its best personal experience. But, if the particle’s category is with high diversity, it would have the tendency to move towards the global optimum of that category. The idea of the birds’ sensitivity to its flying space is also utilized to increase the particles’ speed in undesired spaces in order to leave those spaces as soon as possible. However, in desirable spaces, the particles’ velocity is reduced to provide a situation in which the particles have more time to explore their environment. In the proposed algorithm, the birds’ instinctive behavior is implemented to construct an initial population randomly or chaotically. Experiments provided to compare the proposed algorithm with the state-of-the-art methods show that our optimization algorithm is one of the most efficient and appropriate ones to solve the static optimization problems.


2016 ◽  
Vol 11 (1) ◽  
pp. 58-67 ◽  
Author(s):  
S Sarathambekai ◽  
K Umamaheswari

Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Majid Siavashi ◽  
Mohammad Rasoul Tehrani ◽  
Ali Nakhaee

One of the main reservoir development plans is to find optimal locations for drilling new wells in order to optimize cumulative oil recovery. Reservoir simulation is a necessary tool to study different configurations of well locations to investigate the future of the reservoir and determine the optimal places for well drilling. Conventional well-known numerical methods require modern hardware for the simulation and optimization of large reservoirs. Simulation of such heterogeneous reservoirs with complex geological structures with the streamline-based simulation method is more efficient than the common simulation techniques. Also, this method by calculation of a new parameter called “time-of-flight” (TOF) offers a very useful tool to engineers. In the present study, TOF and distribution of streamlines are used to define a novel function which can be used as the objective function in an optimization problem to determine the optimal locations of injectors and producers in waterflooding projects. This new function which is called “well location assessment based on TOF” (WATOF) has this advantage that can be computed without full time simulation, in contrast with the cumulative oil production (COP) function. WATOF is employed for optimal well placement using the particle swarm optimization (PSO) approach, and its results are compared with those of the same problem with COP function, which leads to satisfactory outcomes. Then, WATOF function is used in a hybrid approach to initialize PSO algorithm to maximize COP in order to find optimal locations of water injectors and oil producers. This method is tested and validated in different 2D problems, and finally, the 3D heterogeneous SPE-10 reservoir model is considered to search locations of wells. By using the new objective function and employing the hybrid method with the streamline simulator, optimal well placement projects can be improved remarkably.


2014 ◽  
Vol 699 ◽  
pp. 770-775
Author(s):  
Ihsan Jabbar Hasan ◽  
Chin Kim Gan ◽  
Meysam Shamshiri ◽  
Mohd Ruddin Ab Ghani ◽  
Ismadi bin Bugis

Capacitor installation is one of the most commonly used methods for reactive power compensation in the distribution networks. In this paper, the optimum capacitor placement and its sizing has been applied in the distribution network in terms of power losses minimization and voltage profile improvement. The maximum and minimum bus voltage and the maximum possible capacitor size are the constraints of optimum capacitor placement and sizing problem. There are considered as the penalty factor in the objective function. In order to evaluate the obtained objective function, the Particle Swarm Optimization (PSO) is utilized to find the best possible capacitor placement and capacity. The OpenDSS software has then been utilized to solve the power flow through Matlab coding interface. To validate the functionality of the proposed method, the IEEE 13-bus test system is implemented and the obtained results have been compared with the IEEE standard case without capacitor compensation. The results show that the proposed algorithm is more cost effective and has lower power losses as compared to the IEEE standard case. In addition, the voltage profile has been improved, accordingly.


2014 ◽  
Vol 951 ◽  
pp. 265-268
Author(s):  
Qing Hua Yao ◽  
Miao Cao

Illumination uniformity measurement technology of target is a main factor that influences the instruments’ function assessing and ballistic test. Non-linear optimizing strategy of illumination uniformity is introduced in this paper, and the method is put forward to improve illumination uniformity based on Quasi-sine Particle Swarm Optimization. This paper describes the basic principle and implementation steps of the algorithm. The objective function and the degree of orientation function are given. The objective function of optimization results show that the algorithm is convergent and the overall lighting objectives of the symmetry are obtained.


Sign in / Sign up

Export Citation Format

Share Document