scholarly journals A class of functionals possessing multiple global minima

2021 ◽  
Vol 66 (1) ◽  
pp. 75-84
Author(s):  
Biagio Ricceri

"We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let $\Omega\subset {\bf R}^n$ ($n\geq 2$) be a smooth bounded domain and let $\Phi:{\bf R}^2\to {\bf R}$ be a $C^1$ function, with $\Phi(0,0)=0$, such that $$\sup_{(u,v)\in {\bf R}^2}\frac{|\Phi_u(u,v)|+|\Phi_v(u,v)|}{1+|u|^p+|v|^p}<+\infty$$ where $p>0$, with $p=\frac{2}{n-2}$ when $n>2$.\\ Then, for every convex set $S\subseteq L^{\infty}(\Omega)\times L^{\infty}(\Omega)$ dense in $L^2(\Omega)\times L^2(\Omega)$, there exists $(\alpha,\beta)\in S$ such that the problem $$-\Delta u=(\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_u(u,v)\hskip 5pt \hbox {\rm in}\hskip 5pt \Omega$$ $$-\Delta v= (\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_v(u,v)\hskip 5pt \hbox {\rm in}\hskip 5pt \Omega$$ $$u=v=0\hskip 5pt \hbox {\rm on}\hskip 5pt \partial\Omega$$ has at least three weak solutions, two of which are global minima in $H^1_0(\Omega)\times H^1_0(\Omega)$ of the functional $$(u,v)\to \frac{1}{2}\left ( \int_{\Omega}|\nabla u(x)|^2dx+\int_{\Omega}|\nabla v(x)|^2dx\right )$$ $$-\int_{\Omega}(\alpha(x)\sin(\Phi(u(x),v(x)))+\beta(x)\cos(\Phi(u(x),v(x))))dx\ .$$"

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 478 ◽  
Author(s):  
Biagio Ricceri

Here is one of the results obtained in this paper: Let Ω ⊂ R n be a smooth bounded domain, let q > 1 , with q < n + 2 n - 2 if n ≥ 3 and let λ 1 be the first eigenvalue of the problem - Δ u = λ u in Ω , u = 0 on ∂ Ω . Then, for every λ > λ 1 and for every convex set S ⊆ H 0 1 ( Ω ) dense in H 0 1 ( Ω ) , there exists α ∈ S such that the problem - Δ u = λ ( u + - ( u + ) q ) + α ( x ) in Ω , u = 0 on ∂ Ω , has at least three weak solutions, two of which are global minima in H 0 1 ( Ω ) of the functional u → 1 2 ∫ Ω | ∇ u ( x ) | 2 d x - λ ∫ Ω 1 2 | u + ( x ) | 2 - 1 q + 1 | u + ( x ) | q + 1 d x - ∫ Ω α ( x ) u ( x ) d x where u + = max { u , 0 } .


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tuhina Mukherjee ◽  
Patrizia Pucci ◽  
Mingqi Xiang

<p style='text-indent:20px;'>In this paper we establish the existence of at least two (weak) solutions for the following fractional Kirchhoff problem involving singular and exponential nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} M\left(\|u\|^{{n}/{s}}\right)(-\Delta)^s_{n/s}u = \mu u^{-q}+ u^{r-1}\exp( u^{\beta})\quad\text{in } \Omega,\\ u&gt;0\qquad\text{in } \Omega,\\ u = 0\qquad\text{in } \mathbb R^n \setminus{ \Omega}, \end{cases} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a smooth bounded domain of <inline-formula><tex-math id="M2">\begin{document}$ \mathbb R^n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ n\geq 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ s\in (0,1) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \mu&gt;0 $\end{document}</tex-math></inline-formula> is a real parameter, <inline-formula><tex-math id="M6">\begin{document}$ \beta &lt;{n/(n-s)} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ q\in (0,1) $\end{document}</tex-math></inline-formula>.The paper covers the so called degenerate Kirchhoff case andthe existence proofs rely on the Nehari manifold techniques.</p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edir Junior Ferreira Leite

Abstract This paper deals with maximum principles depending on the domain and ABP estimates associated to the following Lane–Emden system involving fractional Laplace operators: { ( - Δ ) s ⁢ u = λ ⁢ ρ ⁢ ( x ) ⁢ | v | α - 1 ⁢ v in  ⁢ Ω , ( - Δ ) t ⁢ v = μ ⁢ τ ⁢ ( x ) ⁢ | u | β - 1 ⁢ u in  ⁢ Ω , u = v = 0 in  ⁢ ℝ n ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta)^{s}u&\displaystyle=\lambda\rho(x% )\lvert v\rvert^{\alpha-1}v&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle(-\Delta)^{t}v&\displaystyle=\mu\tau(x)\lvert u\rvert^{\beta-1}u&% &\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=v=0&&\displaystyle\phantom{}\text{in }\mathbb{R}% ^{n}\setminus\Omega,\end{aligned}\right. where s , t ∈ ( 0 , 1 ) {s,t\in(0,1)} , α , β > 0 {\alpha,\beta>0} satisfy α ⁢ β = 1 {\alpha\beta=1} , Ω is a smooth bounded domain in ℝ n {\mathbb{R}^{n}} , n ≥ 1 {n\geq 1} , and ρ and τ are continuous functions on Ω ¯ {\overline{\Omega}} and positive in Ω. We establish some maximum principles depending on Ω. In particular, we explicitly characterize the measure of Ω for which the maximum principles corresponding to this problem hold in Ω. For this, we derived an explicit lower estimate of principal eigenvalues in terms of the measure of Ω. Aleksandrov–Bakelman–Pucci (ABP) type estimates for the above systems are also proved. We also show the existence of a viscosity solution for a nonlinear perturbation of the nonhomogeneous counterpart of the above problem with polynomial and exponential growths. As an application of the maximum principles, we measure explicitly how small | Ω | {\lvert\Omega\rvert} has to be to ensure the positivity of the obtained solutions.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


2009 ◽  
Vol 51 (3) ◽  
pp. 513-524 ◽  
Author(s):  
NGUYEN THANH CHUNG ◽  
QUỐC ANH NGÔ

AbstractUsing variational arguments we study the non-existence and multiplicity of non-negative solutions for a class equations of the formwhere Ω is a bounded domain inN,N≧ 3,fis a sign-changing Carathéodory function on Ω × [0, +∞) and λ is a positive parameter.


2017 ◽  
Vol 20 (01) ◽  
pp. 1650064 ◽  
Author(s):  
Luigi C. Berselli ◽  
Stefano Spirito

We prove that suitable weak solutions of 3D Navier–Stokes equations in bounded domains can be constructed by a particular type of artificial compressibility approximation.


Sign in / Sign up

Export Citation Format

Share Document