Maximum Principles and ABP Estimates to Nonlocal Lane–Emden Systems and Some Consequences

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edir Junior Ferreira Leite

Abstract This paper deals with maximum principles depending on the domain and ABP estimates associated to the following Lane–Emden system involving fractional Laplace operators: { ( - Δ ) s ⁢ u = λ ⁢ ρ ⁢ ( x ) ⁢ | v | α - 1 ⁢ v in  ⁢ Ω , ( - Δ ) t ⁢ v = μ ⁢ τ ⁢ ( x ) ⁢ | u | β - 1 ⁢ u in  ⁢ Ω , u = v = 0 in  ⁢ ℝ n ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta)^{s}u&\displaystyle=\lambda\rho(x% )\lvert v\rvert^{\alpha-1}v&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle(-\Delta)^{t}v&\displaystyle=\mu\tau(x)\lvert u\rvert^{\beta-1}u&% &\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=v=0&&\displaystyle\phantom{}\text{in }\mathbb{R}% ^{n}\setminus\Omega,\end{aligned}\right. where s , t ∈ ( 0 , 1 ) {s,t\in(0,1)} , α , β > 0 {\alpha,\beta>0} satisfy α ⁢ β = 1 {\alpha\beta=1} , Ω is a smooth bounded domain in ℝ n {\mathbb{R}^{n}} , n ≥ 1 {n\geq 1} , and ρ and τ are continuous functions on Ω ¯ {\overline{\Omega}} and positive in Ω. We establish some maximum principles depending on Ω. In particular, we explicitly characterize the measure of Ω for which the maximum principles corresponding to this problem hold in Ω. For this, we derived an explicit lower estimate of principal eigenvalues in terms of the measure of Ω. Aleksandrov–Bakelman–Pucci (ABP) type estimates for the above systems are also proved. We also show the existence of a viscosity solution for a nonlinear perturbation of the nonhomogeneous counterpart of the above problem with polynomial and exponential growths. As an application of the maximum principles, we measure explicitly how small | Ω | {\lvert\Omega\rvert} has to be to ensure the positivity of the obtained solutions.

2010 ◽  
Vol 52 (2) ◽  
pp. 383-389 ◽  
Author(s):  
CHAOQUAN PENG

AbstractIn this paper, we show that the semi-linear elliptic systems of the form (0.1) possess at least one non-trivial solution pair (u, v) ∈ H01(Ω) × H01(Ω), where Ω is a smooth bounded domain in ℝN, λ and μ are non-negative numbers, f(x, t) and g(x, t) are continuous functions on Ω × ℝ and asymptotically linear at infinity.


2018 ◽  
Vol 18 (2) ◽  
pp. 237-267 ◽  
Author(s):  
Phuoc-Tai Nguyen ◽  
Laurent Véron

AbstractWe prove the existence of a solution of{(-\Delta)^{s}u+f(u)=0}in a smooth bounded domain Ω with a prescribed boundary value μ in the class of Radon measures for a large class of continuous functionsfsatisfying a weak singularity condition expressed under an integral form. We study the existence of a boundary trace for positive moderate solutions. In the particular case where{f(u)=u^{p}}and μ is a Dirac mass, we show the existence of several critical exponentsp. We also demonstrate the existence of several types of separable solutions of the equation{(-\Delta)^{s}u+u^{p}=0}in{\mathbb{R}^{N}_{+}}.


2021 ◽  
Vol 11 (1) ◽  
pp. 684-701
Author(s):  
Siyu Chen ◽  
Carlos Alberto Santos ◽  
Minbo Yang ◽  
Jiazheng Zhou

Abstract In this paper, we consider the following modified quasilinear problem: − Δ u − κ u Δ u 2 = λ a ( x ) u − α + b ( x ) u β i n Ω , u > 0 i n Ω , u = 0 o n ∂ Ω , $$\begin{array}{} \left\{\begin{array}{c}\, -{\it\Delta} u-\kappa u{\it\Delta} u^2 = \lambda a(x)u^{-\alpha}+b(x)u^\beta \, \, in\, {\it\Omega}, \\\!\! u \gt 0 \, \, in\, {\it\Omega}, \, \, \, \, \, \, \, u = 0 \, \, on \, \partial{\it\Omega} , \\ \end{array}\right. \end{array} $$ where Ω ⊂ ℝ N is a smooth bounded domain, N ≥ 3, a, b are two bounded continuous functions, α > 0, 1 < β ≤ 22* − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of solution curve at the asmptotic point.


2007 ◽  
Vol 49 (2) ◽  
pp. 377-390 ◽  
Author(s):  
CHAOQUAN PENG ◽  
JIANFU YANG

AbstractIn this paper, we show that the semilinear elliptic systems of the form (0.1) possess at least one positive solution pair (u, v) ∈ H10(Ω) × H10(Ω), where Ω is a smooth bounded domain in $\mathbb{R}^N$, f(x,t) and g(x, t) are continuous functions on $\Omega\times \mathbb{R}$ and asymptotically linear at infinity.


2021 ◽  
Vol 66 (1) ◽  
pp. 75-84
Author(s):  
Biagio Ricceri

"We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let $\Omega\subset {\bf R}^n$ ($n\geq 2$) be a smooth bounded domain and let $\Phi:{\bf R}^2\to {\bf R}$ be a $C^1$ function, with $\Phi(0,0)=0$, such that $$\sup_{(u,v)\in {\bf R}^2}\frac{|\Phi_u(u,v)|+|\Phi_v(u,v)|}{1+|u|^p+|v|^p}<+\infty$$ where $p>0$, with $p=\frac{2}{n-2}$ when $n>2$.\\ Then, for every convex set $S\subseteq L^{\infty}(\Omega)\times L^{\infty}(\Omega)$ dense in $L^2(\Omega)\times L^2(\Omega)$, there exists $(\alpha,\beta)\in S$ such that the problem $$-\Delta u=(\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_u(u,v)\hskip 5pt \hbox {\rm in}\hskip 5pt \Omega$$ $$-\Delta v= (\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_v(u,v)\hskip 5pt \hbox {\rm in}\hskip 5pt \Omega$$ $$u=v=0\hskip 5pt \hbox {\rm on}\hskip 5pt \partial\Omega$$ has at least three weak solutions, two of which are global minima in $H^1_0(\Omega)\times H^1_0(\Omega)$ of the functional $$(u,v)\to \frac{1}{2}\left ( \int_{\Omega}|\nabla u(x)|^2dx+\int_{\Omega}|\nabla v(x)|^2dx\right )$$ $$-\int_{\Omega}(\alpha(x)\sin(\Phi(u(x),v(x)))+\beta(x)\cos(\Phi(u(x),v(x))))dx\ .$$"


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


2021 ◽  
Vol 18 (2) ◽  
pp. 255-278
Author(s):  
Myroslav Sheremeta ◽  
Oksana Mulyava

For positive continuous functions $\alpha$ and $\beta$ increasing to $+\infty$ on $[x_0,+\infty)$ and the Laplace--Stieltjes integral $I(\sigma)=\int\limits_{0}^{\infty}f(x)e^{x\sigma}dF(x),\,\sigma\in{\Bbb R}$, a generalized convergence $\alpha\beta$-class is defined by the condition $$\int\limits_{\sigma_0}^{\infty}\dfrac{\alpha(\ln\,I(\sigma))}{\beta(\sigma)}d\sigma<+\infty.$$ Under certain conditions on the functions $\alpha$, $\beta$, $f$, and $F$, it is proved that the integral $I$ belongs to the generalized convergence $\alpha\beta$-class if and only if $\int\limits_{x_0}^{\infty}\alpha'(x)\beta_1 \left(\dfrac1{x}\ln\dfrac1{f(x)}\right)<+\infty,\,\beta_1(x)= \int\limits_{x}^{+\infty}\dfrac{d\sigma}{\beta(\sigma)}$. For a positive, convex on $(-\infty,\,+\infty)$ function $\Phi$ and the integral $I$, a convergence $\Phi$-class is defined by the condition $\int\limits_{\sigma_0}^{\infty}\dfrac{\Phi'(\sigma)\ln\,I(\sigma)}{\Phi^2(\sigma)}d\sigma<+\infty$, and it is proved that under certain conditions on $\Phi$, $f$ and $F$, the integral $I$ belongs to the convergence $\Phi$-class if and only if $\int\limits_{x_0}^{\infty}\dfrac{dx}{\Phi'\left(({1/x)\ln\,(1/f(x))}\right)}<+\infty$. Conditions are also found for the integral of the Laplace--Stieltjes type $\int\limits_{0}^{\infty} f(x)g(x\sigma)dF(x)$ to belong to the generalized convergence $\alpha\beta$-class if and only if the function $g$ belongs to this class.


2020 ◽  
Vol 150 (5) ◽  
pp. 2682-2718 ◽  
Author(s):  
Boumediene Abdellaoui ◽  
Antonio J. Fernández

AbstractLet$\Omega \subset \mathbb{R}^{N} $, N ≽ 2, be a smooth bounded domain. For s ∈ (1/2, 1), we consider a problem of the form $$\left\{\begin{array}{@{}ll} (-\Delta)^s u = \mu(x)\, \mathbb{D}_s^{2}(u) + \lambda f(x), & {\rm in}\,\Omega, \\ u= 0, & {\rm in}\,\mathbb{R}^{N} \setminus \Omega,\end{array}\right.$$ where λ > 0 is a real parameter, f belongs to a suitable Lebesgue space, $\mu \in L^{\infty}$ and $\mathbb {D}_s^2$ is a nonlocal ‘gradient square’ term given by $$\mathbb{D}_s^2 (u) = \frac{a_{N,s}}{2} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}\,{\rm d}y.$$ Depending on the real parameter λ > 0, we derive existence and non-existence results. The proof of our existence result relies on sharp Calderón–Zygmund type regularity results for the fractional Poisson equation with low integrability data. We also obtain existence results for related problems involving different nonlocal diffusion terms.


Sign in / Sign up

Export Citation Format

Share Document