scholarly journals Interaction soil compaction and soil moisture in physiological responses of freshly planted coffee

2021 ◽  
Vol 6 (4) ◽  
pp. 370-378
Author(s):  
Samuel Moreira Dias ◽  
André Cabral França ◽  
Ricardo Siqueira da Silva ◽  
Rita de Cassia Ribeiro Carvalho ◽  
Fabrício Resende de Aguiar

In the field, coffee is subject to the stress of soil compaction and lack of water, which may cause changes in the physiological responses of the plant. The objective of this study was to evaluate the physiological responses of the coffee tree under different soil moisture content and compaction degrees in the soil subsurface. The experimental design was in blocks, arranged in a factorial scheme, with four replications. The first factor corresponds to the two wetlands, 50 and 100% of the soil field capacity. The second factor corresponds to 60, 70, 80 and 90% of soil subsurface compaction. The experimental plot consisted of a Coffea arabica L. plant grown on a polyvinyl chloride column. The physiological responses were evaluated at 180 days of planting. The photosynthetic rate, carbon consumption, CO2 concentration in the substamatic chamber, internal carbon / atmospheric carbon ratio, water efficiency and absolute coffee growth rate were influenced by the different compaction degrees and soil moisture content. The transpiration rate and the root weight ratio were influenced only by the humidity, as opposed to the stomatal conductance and the foliar temperature, which were by degrees of compaction. The ratio of root system per soil layer was influenced by compaction degrees and soil depth. The limitation of root growth and lack of water are the main causes of the decrease in physiological responses. Subsurface compaction and water deficit together potentiate the effect negatively on the physiological responses of freshly seeded coffee plants.

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


2013 ◽  
pp. 183-186
Author(s):  
Géza Tuba

he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.


2015 ◽  
Vol 24 (3) ◽  
pp. e038 ◽  
Author(s):  
Michal Allman ◽  
Martin Jankovský ◽  
Valéria Messingerová ◽  
Zuzana Allmanová ◽  
Michal Ferenčík

<p><em>Aim of study: </em>The primary objective of this paper was to compare the effects of different types of forestry machine chassis on the compaction of the top layers of soil and to define the soil moisture content level, at which machine traffic results in maximum compaction.</p><p><em>Area of study:</em> Measurements were conducted in eight forest stands located in Slovakia and the Czech Republic. The soil types in the stands subjected to the study were luvisols, stagnosols, cambisols, and rendzinas.</p><p><em>Material and Methods:</em> The measurements were focused on tracked and wheeled (equipped with low pressure tyres) cut-to-length machines, and skidders equipped with wide and standard tyres. The bulk density of soil was determined from soil samples extracted from the ruts, the centre of the skid trail, and the undisturbed stand. To determine soil moisture content, at which the soil is the most susceptible to compaction, the Proctor standard test was employed.</p><p><em>Main results:</em> The moisture content for maximal compaction fluctuated from 12% to 34.06%. Wheeled machines compacted the soil to 1.24 – 1.36 g.cm<sup>-3</sup> (30.3 – 35.4 % compaction) in dried state. Bulk density of soil in stands where tracked machine operated was lower, ranging from 1.02 to 1.06 g.cm<sup>-3</sup> (25.3 % compaction).</p><p><em>Research highlights:</em> All wheeled machines caused the same amount of soil compaction in the ruts, despite differences in tyres, machine weight, etc. Maximum compaction caused by forestry machines occurred at minimal moisture contents, easily achievable in European climatic conditions.  </p><p><strong>Keywords:</strong> soil compaction; bulk density; soil moisture content limits; cut-to-length machines; skidders.</p>


Author(s):  
Y.V Bekhovykh ◽  

The research goal was to study effect of soil compaction on potential moisture content. The object of study was leached chernozem of Priobskoye plateau. During the research the following tasks were solved: to study the change in total capacity in the surface layer of soil by repeated external pressure, created under different soil moisture; study the change in total capacity in the surface soil layer from the values of the external pressure created at different soil moisture; to study the dependence of the full moisture capacity of the soil to the density summation. The study revealed that the total water capacity is a function of changes in soil density and indirectly depends on the amount of external pressure, its value and soil moisture.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 148 ◽  
Author(s):  
Michael O’Flynn ◽  
John Finnan ◽  
Edna Curley ◽  
Kevin McDonnell

Harvesting Miscanthus × giganteus (J.M. Greef & Deuter ex Hodkinson & Renvoize) after shoot emergence is known to reduce yields in subsequent seasons. This research was conducted in Miscanthus to assess the effects on crop response and soil compaction of annually repeated traffic, applied both before new growth in the rhizomes (early harvest) and after shoot emergence (late harvest), at two different soil moisture contents. While an annual early harvest, yields more than a late harvest, because damage to new shoots is avoided, soil compaction may be increased following repeated harvests. Five treatments were tested: (a) An untrafficked control, (b) early-traffic on soil with typical soil moisture content (SMC) (early-normal), (c) early-traffic on soil with elevated SMC (early-elevated), (d) late-traffic on soil with typical SMC (late-normal) and (e) late-traffic on soil with elevated SMC (late-wet). The experiment was conducted on a Gleysol in Co. Dublin, Ireland during 2010 and 2011. Crop response effects were assessed by measuring stem numbers, stem height, trafficked zone biomass yield (November) and overall stem yield (January). Compaction effects were assessed by measuring penetration resistance, bulk density and water infiltration rate. Trafficked zone biomass yield in the early-dry and early-wet treatments was, respectively, 18% and 23% lower than in the control, but was, respectively, 39% and 31% higher than in the late-dry treatment. Overall, stem yield was significantly lower in the late-normal and late-wet treatments (10.4 and 10.1 tdm ha−1 respectively) when compared with the control (12.4 tdm ha−1), but no significant difference was recorded in overall stem yield between both early-traffic treatments and the control. Penetration resistance values were significantly higher in all trafficked treatments when compared with the control at depths of 0.15 m (≥54–61%) and 0.30 m (≥27–57%) and were significantly higher in 2011 when compared with 2010 at depths of 0.15 and 0.30 m. Baler system traffic in Miscanthus significantly reduced yields and significantly increased compaction annually. Miscanthus harvested early, on a dry soil, yielded 1.1 tdm ha−1 more than when harvested late on a dry soil. The yield advantage increased to 1.3 tdm ha−1 when early harvesting on a soil with 40–43% moisture content was compared with late harvesting on a wetter soil (51–52% moisture content). In this study, the magnitude of yield losses from compaction or other causes in early harvests was substantially lower than the yield losses, which resulted from shoot damage in late harvests. It is likely in similar climates that the results of this study would also apply to other perennial crops growing in similar soil types.


2005 ◽  
Vol 53 (1) ◽  
pp. 31-39 ◽  
Author(s):  
L. Huzsvay ◽  
J. Nagy

The yield of maize is primarily influenced by sunlight, temperature, available plant nutrients and water supply. Since plants take up water through their roots, the most decisive factor is not precipitation but the quantity of water available in the soil. In this study, a simple, easy-to-reproduce, capacitive model was elaborated to determine the available moisture content for maize. During the calculations, based on the balance method, the available moisture content in the top 110 cm soil layer was determined, taking daily weather data into account. The examinations were carried out on a medium heavy chernozem soil with lime deposits, in a multifactorial experiment at the Látókép Experimental Station of the Center of Agricultural Sciences, Debrecen University, between 1990 and 2004. Annual yield fluctuation is primarily determined by the soil moisture content in the month of July and the water supplies in May, according to regression analysis. The maize yields in the past 15 years could be calculated with an accuracy of 570 kg/ha, an error limit of below 10% and an r value of 0.805, using a regression line and the data of monthly moisture supplies. However, the yields of fertilized plots can only be estimated with an accuracy of 1 t/ha on average. Fertilizer utilization is influenced by the moisture content of the soil, so it makes sense to include this in the analysis instead of the other environmental factors. Water is required for nutrient utilization. In years with poor or medium water supplies, moderate fertilizer rates are more effective, compared to higher rates in years with better water supplies. Efficient fertilization in maize production can only be achieved by harmonizing soil moisture content and the applied fertilizer rate.


2012 ◽  
Vol 256-259 ◽  
pp. 139-144
Author(s):  
Rong Fei Zhao ◽  
Yong Ning Mi ◽  
Wei Gao

A series of moisture content tests were carried out to study the changes in geogrid-reinforced clay moisture content under freezing-thawing cycles, the influences of compaction degree, reinforcement layers and initial moisture content of the soil on the soil moisture content under freezing-thawing cycles were discussed. We can see that the soil compaction degree is the first important factor to the moisture content, the change of upper lay clay moisture content is positive for the low compaction degree and negative for a high one; the reinforcement layers is the second important factor to moisture content, the upper lay moisture content reduces with the increasing of reinforcement layers, it is significant in the high compaction soil; the initial moisture content is the weakest factor, a big change of upper lay moisture content only appears when the initial moisture content is large and the soil compaction is low.


1969 ◽  
Vol 58 (3) ◽  
pp. 279-292
Author(s):  
Lal N. Shukla

Soil compaction tests were conducted on a farm in the Lajas Valley of Puerto Rico. Experiments were carried out in five fields of sugarcane to determine soil compaction caused in the center of furrows by a J & L harvester and in banks of ridges caused by loaded transport carts. Similar tests also were conducted in three additional fields to determine soil compaction caused by the harvester in the center of furrows at a moisture content close to field capacity. Penetrometer readings were taken at random in the center of furrows and in the banks of ridges before and after the passing of the load. Soil moisture content was determined in these locations by the oven-dry method. Soil compaction caused by the harvester was not severe under the conditions of the test, but the loaded transport carts caused considerable soil compaction in the bank of the ridges.


Sign in / Sign up

Export Citation Format

Share Document