Purification of water from dissolved gases in a film unit with discrete-rough walls

2018 ◽  
Vol 11 (1) ◽  
pp. 48-53
Author(s):  
E. A. Lapteva ◽  
G. K. Shagieva ◽  
A. G. Laptev
1892 ◽  
Vol 34 (861supp) ◽  
pp. 13759-13760
Author(s):  
Wm. P. Mason.

1891 ◽  
Vol 32 (834supp) ◽  
pp. 13327-13328
Author(s):  
Albert R. Leeds

2018 ◽  
Author(s):  
Pourya Forooghi ◽  
Franco Magagnato ◽  
Bettina Frohnapfel

Author(s):  
Veena Vijayan ◽  
Suguna Yesodharan ◽  
E. P. Yesodharan

Solar photocatalysis as a potential green technology for the removal of traces of the dye pollutant Indigo carmine (IC) from water is investigated using ZnO as the catalyst. Degradation/decolorization alone does not result in complete decontamination as seen from the significant Chemical Oxygen Demand (COD) of water even after the parent compound has disappeared completely. The degradation proceeds through many intermediates which also get mineralized eventually but slowly. Oxalic acid is identified as a stable slow mineralizing degradation product which itself is formed from other transient intermediates. Effect of various parameters such as catalyst dosage, concentration of the dye, pH, temperature, presence of contaminant salts etc. on the degradation is investigated and quantified. Oxidants such as S2O82- and H2O2 have only moderate influence on the degradation. The degradation follows variable kinetics depending on the concentration of the substrate. The reaction proceeds very slowly in the absence of O2 indicating the importance of reactive oxygen species and hydroxyl free radicals in photocatalysis. H2O2 formed insitu in the system undergoes concurrent decomposition resulting in stabilization in its concentration. The study demonstrates that solar photocatalysis can be used as a viable tool for the purification of water contaminated with traces of IC.


2019 ◽  
Vol 12 (1) ◽  
pp. 18-21
Author(s):  
V. A. Tikhonov

The influence of the periodicity of diagnostic measurements on the operational state of high-voltage transformers is considered. Examples of defects of switching devices of converter transformers and methods for their detection are given. The rationale for the importance of recognition of defects at an early stage of their occurrence is given. The influence of the multiplicity of overvoltages on the service life of converter transformers in the aluminum industry is investigated. Based on the analysis of the service life of converter transformers of one of the powerful aluminum plants, where 83% of converter transformers have exhausted their standard service life, it is shown that in 40% of cases it would be possible to avoid their failures, with timely detection and elimination of emerging defects. Examples of defects of OLR (on-load regulators) of converter transformers and methods for their detection are given. The importance of recognition of defects at an early stage of their occurrence is substantiated. A method for chromatographic analysis of dissolved gases in transformer oil has been developed for the qualitative determination of defects and ways to eliminate them. Examples of diagnostics of converter transformers at operating voltage and working load are given, providing the best quality operational characteristics of converter transformers. The periodicity of diagnostic measurements and the reduction of defects and failures has been substantiated. The question of diagnosing the state of the converter transformer TDNP-40000/10 at an enterprise of the aluminum industry is investigated. Currently, diagnostic methods are being developed based on chromatographic analysis of dissolved gases in transformer oil. The presented method of evaluating the operating parameters of transformers allows for the safe operation of high-voltage transformers and enables to increase the reliability of the power supply scheme of aluminum industry plants.


Author(s):  
Gabriel Maltese de Oliveira Meletti ◽  
Erick de Moraes Franklin

2020 ◽  
pp. 34-43
Author(s):  
N. R. Memetov ◽  
◽  
A. V. Gerasimova ◽  
A. E. Kucherova ◽  
◽  
...  

The paper evaluates the effectiveness of the use of graphene nanostructures in the purification of lead (II) ions to improve the ecological situation of water bodies. The mechanisms and characteristic parameters of the adsorption process were analyzed using empirical models of isotherms at temperatures of 298, 303, 313 and 323 K, which correspond to the following order (based on the correlation coefficient): Langmuir (0.99) > Temkin (0.97) > Dubinin – Radushkevich (0.90). The maximum adsorption capacity of the material corresponds to the range from 230 to 260 mg/g. We research the equilibrium at the level of thermodynamic parameter estimates, which indicates the spontaneity of the process, the endothermic nature and structure change of graphene modified with phenol-formaldehyde resin during the adsorption of lead (II) ions, leading to an increase in the disorder of the system.


Alloy Digest ◽  
1991 ◽  
Vol 40 (12) ◽  

Abstract DYNAFLEX VAC-ARC steel is a medium alloyed, air hardening ultra high strength grade. It is produced by consumable electrode vacuum melting which provides superior cleanliness, elimination of dissolved gases and preferred ingot structure. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance as well as heat treating. Filing Code: TS-144. Producer or source: Latrobe Steel Company. Originally published as Dynaflex, February 1964, revised December 1991.


Sign in / Sign up

Export Citation Format

Share Document