scholarly journals Preparation of Dosimetry of Boron Neutron Capture Therapy (BNCT) for In vivo Test Planning system using Monte Carlo N-Particle Extended (MCNP-X) Software

Author(s):  
Muhammad Ilma Muslih Arrozaqi ◽  
Kusminarto Kusminarto ◽  
Yohannes Sardjono

Cancer is a disease with second largest patients in the world.  In Indonesia, the number of radiotherapy facility in Indonesia is less than 30 units and every patients needs more than single exposure, so that it result a long waiting list of treatment up to one year. Now, a new treatment of cancer is developed. It is Boron Neutron Capture Therapy that using capture reaction of neutron by Boron-10. Before this method is applied to patient, it requires some testing which is one of them is in vivo test. This research has been conducting to prepare the in vivo test, especially in dosimetry. Preparation of dosimetry includes collimator design and mouse phantom model. The optimum specification of the collimator is consist of Nickel collimator wall with 2 cm of thickness, Aluminum moderator with 10 cm of thickness and lead gamma shield with 3.5 of thickness. This design result in 1.18 x 10<sup>8</sup> n/cm<sup>2</sup>s of epithermal and thermal neutron flux, 2,24 x 10<sup>-11</sup> Gy cm<sup>2</sup>/s of fast neutron component dose, 1.35 x 10<sup>-12</sup> Gy cm<sup>2</sup>/s of gamma dose component, and 7.18 x 10<sup>-1</sup> of neutron current and flux ratio. Mouse phantom model is built by two basic kind of geometry, they are Ellipsoid and Elliptical Tory. Both of basic geometry can be used to make all important organs of mouse phantom for dosimetry purpose.

2016 ◽  
Vol 1 (3) ◽  
pp. 151
Author(s):  
Agung Prastowo ◽  
Yohannes Sardjono ◽  
Widarto Widarto

A study of voxel mice model of MCNPX has been done for in vivo test Boron Neutron Capture Therapy (BNCT). Mathematical and parameters were used to construct the stylized Mice model phantom. The geometry was modified into simulation software MCNPX (Monte Carlo N-Particle eXtended) simulation input. The result of mice stylized model phantom has been showed Figure 3.


2016 ◽  
Vol 1 (2) ◽  
pp. 108
Author(s):  
Widarto Widarto ◽  
Isman Mulyadi Tri Atmoko ◽  
Gede Sutresna Wijaya

The quality manajement system program of in vitro / in vivo test facility of  Boron Neutron Capture Therapy (BNCT) methode as quality assurance requirement for utilization of radial pearcing beamport of Kartini research have been done.  Identification and management of technical specification and parameters meassurement of to the radial piercing beamport have been determined for preparing in vitro / in vivo test facility. The parameters are epithermal neutron flux is  9,8243E+05  n cm<sup>-2</sup> s<sup>-1</sup>and  thermal neutron flux is 3,0691E+06 n cm<sup>-2</sup> s<sup>-1</sup>, radiation shielding of parafin,  dimension and size  of piercing radial and instrumentatin and control system for automatic transfer of in vitro / in vivo samplels have been documented. Management system of the documents for fullfil  basic guidance to perform working job of in vitro / in vivo at the piercing radial beamport of Kartini Research Reactor in order purpose utilization of the reactor  for safety worker of the radiation area, society  and invironment beeing safely


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3609 ◽  
Author(s):  
Pulagam ◽  
Gona ◽  
Gómez-Vallejo ◽  
Meijer ◽  
Zilberfain ◽  
...  

Background: Boron Neutron Capture Therapy (BNCT) is a binary approach to cancer therapy that requires accumulation of boron atoms preferentially in tumour cells. This can be achieved by using nanoparticles as boron carriers and taking advantage of the enhanced permeability and retention (EPR) effect. Here, we present the preparation and characterization of size and shape-tuned gold NPs (AuNPs) stabilised with polyethylene glycol (PEG) and functionalized with the boron-rich anion cobalt bis(dicarbollide), commonly known as COSAN. The resulting NPs were radiolabelled with 124I both at the core and the shell, and were evaluated in vivo in a mouse model of human fibrosarcoma (HT1080 cells) using positron emission tomography (PET). Methods: The thiolated COSAN derivatives for subsequent attachment to the gold surface were synthesized by reaction of COSAN with tetrahydropyran (THP) followed by ring opening using potassium thioacetate (KSAc). Iodination on one of the boron atoms of the cluster was also carried out to enable subsequent radiolabelling of the boron cage. AuNPs grafted with mPEG-SH (5 Kda) and thiolated COSAN were prepared by ligand displacement. Radiolabelling was carried out both at the shell (isotopic exchange) and at the core (anionic absorption) of the NPs using 124I to enable PET imaging. Results: Stable gold nanoparticles simultaneously functionalised with PEG and COSAN (PEG-AuNPs@[4]−) with hydrodynamic diameter of 37.8 ± 0.5 nm, core diameter of 19.2 ± 1.4 nm and ξ-potential of −18.0 ± 0.7 mV were obtained. The presence of the COSAN on the surface of the NPs was confirmed by Raman Spectroscopy and UV-Vis spectrophotometry. PEG-AuNPs@[4]− could be efficiently labelled with 124I both at the core and the shell. Biodistribution studies in a xenograft mouse model of human fibrosarcoma showed major accumulation in liver, lungs and spleen, and poor accumulation in the tumour. The dual labelling approach confirmed the in vivo stability of the PEG-AuNPs@[4]−. Conclusions: PEG stabilized, COSAN-functionalised AuNPs could be synthesized, radiolabelled and evaluated in vivo using PET. The low tumour accumulation in the animal model assayed points to the need of tuning the size and geometry of the gold core for future studies.


Author(s):  
Hiroaki Kumada ◽  
Takemi Nakamura ◽  
Akira Matsumura ◽  
Koji Ono

To improve treatment planning in boron neutron capture therapy (BNCT), a new Monte-Carlo radiotherapy planning system is under development at Japan Atomic Energy Agency (JAEA). This system (developing code: JCDS-FX) builds on fundamental technologies of JCDS (JAEA Computation Dosimetry System) which has been applied to actual BNCT trials at Japan Research Reactor No.4 (JRR-4). Basic technologies of JCDS have been taken over to JCDS-FX, and some new functions have been built into the system. One of features of the JCDS-FX is that PHITS as a multi-purpose particle Monte-Carlo transport code has been applied to particle transport calculation. Application of PHITS enables to evaluate doses for neutrons and photons as well as protons and heavy ions. Therefore, the JCDS-FX with PHITS can perform treatment planning for not only BNCT but also particle radiotherapy. To verify calculation accuracy of the JCDS-FX with PHITS, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial conducted at JRR-4 were performed. The verification results indicated that JCDS-FX is applicable to BNCT treatment planning in practical use. Further verifications of the system are being performed to achieve practical application of the system in the future. And in addition to the BNCT, investigations for application of the system to any other particle radiotherapy like proton therapy are carried forward.


2018 ◽  
Vol 35 (3) ◽  
pp. 213-216
Author(s):  
Atika Maysaroh ◽  
Kusminarto Kusminarto ◽  
Dwi Satya Palupi ◽  
Yohannes Sardjono

Cancer is one of the leading causes of death globally, with lung cancer being among the most prevalent. Boron Neutron Capture Therapy (BNCT) is a cancer therapy method that uses the interaction between thermal neutrons and boron-10 which produces a decaying boron-11 particle and emits alpha, lithium 7 and gamma particles. A study was carried out to model an in vivo experiment of rat organisms that have lung cancer. Dimensions of a rat’s body were used in Konijnenberg research. Modeling lung cancer type, non-small cell lung cancer, was used in Monte Carlo N Particle-X. Lung cancer was modeled with a spherical geometry consisting of 3 dimensions: PTV, GTV, and CTV. In this case, the neutron source was from the radial piercing beam port of Kartini Reactor, Yogyakarta. The variation of boron concentration was 20, 25, 30, 35, 40, and 40 µg/g cancer. The output of the MCNP calculation was neutron scattering dose, gamma-ray dose and neutron flux from the reactor. A neutron flux was used to calculate the alpha proton and gamma-ray dose from the interaction of tissue material and thermal neutrons. The total dose was calculated from a four-dose component in BNCT. The results showed that the dose rate will increase when the boron concentration is higher, whereas irradiating time will decrease.


Sign in / Sign up

Export Citation Format

Share Document