scholarly journals Experimental Investigations on Dual Bio-Fuel (Pine Biodiesel and Palm Biodiesel) Blended with Diesel on a Single Cylinder Diesel Engine

Author(s):  
M. Prabhahar et al., M. Prabhahar et al., ◽  

This paper represents the relative performance of a small single-cylinder diesel engine having capacity 3.5 kW. This paper covers experimental investigations of most influencing combustion parameters such as compression ratio, injection pressure and start of injection timing and their values on performance, emission and combustion characteristic of the small single-cylinder CRDI diesel engine for which the mechanical fuel injection system retrofitted with a simple version of the CRDI system. CRDI has yielded good results for large diesel and petrol engines but still not incorporate for cheaper small single-cylinder engines, typically used in the agricultural sector and decentralized power sector for a country like India. It is observed that starts of injection timing and injection pressure are the key parameters for improving the combustion characteristics and therefore engine performance while compression ratio mainly affects the emission characteristics of the engine. Retrofitted CRDI system yielded improved exhaust emission and performance of the engine.


2021 ◽  
Vol 2 (1) ◽  
pp. 15-24
Author(s):  
Ishwar Joshi ◽  
Surya Prasad Adhikari

 In this study, biodiesel from the stem of Pinus roxburghii was prepared by steam distillation process. Consequently, the physical and thermal properties of pine biodiesel (P100), and 20 % pine-biodiesel and 80 % diesel (P20) were tested on American Society for Testing and Materials (ASTM) standards. The test results confirmed that the thermophysical properties of pine biodiesel and its blend were suitable for the fuel in diesel engine without any modification in the test engine. Eventually, the engine performance and combustion parameters were evaluated for pine-biodiesel blend for 5 % biodiesel and 95 % diesel (P5), 10 % biodiesel and 90 % diesel (P10), 15 % biodiesel and 85 % diesel (P15) and P20, and compared with diesel on Kirloskar Single Cylinder Compression Ignition Engine for a compression ratio of 15:1. In the midst of those in different blends evaluated, P15 showed the better brake specific fuel consumption (BSFC) i.e 18.75 % lower than diesel fuel particularly up to 50 % of the engine load. However, at higher load, decrease rate in BSFC of P15 fuel is lower than engine load up to 50 %. Similarly, brake thermal efficiency (BTE) of P15 increases to 13.5% mainly on 50 % loading condition of the engine. At above, increment rate of BTE of pine oil biodiesel compared to diesel decreases. The brake power (BP) and brake mean effective pressure (BMEP) of P15 also found nearer to diesel. However, the BP of P15 found higher compared to diesel in all loading conditions. Thus, from the experimental investigations, P15 blend of pine oil biodiesel was found to be amenable for its use in compression ignition (CI) engine without any modification, as the BTE and SFC were found to better and, BP, indicated power (IP) and BMEP were also found nearer to diesel fuel.


Author(s):  
M. A. Adzmi ◽  
A. Abdullah ◽  
Z. Abdullah ◽  
A. G. Mrwan

Evaluation of combustion characteristic, engine performances and exhaust emissions of nanoparticles blended in palm oil methyl ester (POME) was conducted in this experiment using a single-cylinder diesel engine. Nanoparticles used was aluminium oxide (Al2O3) and silicon dioxide (SiO2) with a portion of 50 ppm and 100 ppm. SiO2 and Al2O3 were blended in POME and labelled as PS50, PS100 and PA50, PA100, respectively. The data results for PS and PA fuel were compared to POME test fuel. Single cylinder diesel engine YANMAR TF120M attached with DEWESoft data acquisition module (DAQ) model SIRIUSi-HS was used in this experiment. Various engine loads of zero, 7 N.m, 14 Nm, 21 N.m and 28 N.m at a constant engine speed of 1800 rpm were applied during engine testing. Results for each fuel were obtained by calculating the average three times repetition of engine testing. Findings show that the highest maximum pressure of nanoparticles fuel increase by 16.3% compared to POME test fuel. Other than that, the engine peak torque and engine power show a significant increase by 43% and 44%, respectively, recorded during the PS50 fuel test. Meanwhile, emissions of nanoparticles fuel show a large decrease by 10% of oxide of nitrogen (NOx), 6.3% reduction of carbon dioxide (CO2) and a slight decrease of 0.02% on carbon monoxide (CO). Addition of nanoparticles in biodiesel show positive improvements when used in diesel engines and further details were discussed.  


Sign in / Sign up

Export Citation Format

Share Document